TY - JOUR
T1 - The spectrally dependent monotic component in the decreasing-loudness aftereffect: Implications for dynamic auditory localization
AU - Reinhardt-Rutland, Anthony
PY - 2010/3/30
Y1 - 2010/3/30
N2 - Listeners exposed to a tone increasing in intensity report an aftereffect of decreasing loudness in a steady tone heard afterward. In the present study, the spectral dependence of the monotic decreasing-loudness aftereffect (adapting and testing 1 ear) was compared with (a) the spectral dependence of the interotic decreasing-loudness aftereffect (adapting 1 ear and testing the other ear) and (b) a non-adaptation control condition. The purpose was to test the hypothesis that the decreasing-loudness aftereffect may concern the sensory processing associated with dynamic localization. The hypothesis is based on two premises: (a) dynamic localization requires monaural sensory processing, and (b) sensory processing is reflected in spectral selectivity. Hence, the hypothesis would be supported if the monotic aftereffect were more spectrally dependent and stronger than the interotic aftereffect; A. H. Reinhardt-Rutland (1998) showed that the hypothesis is supported with regard to the related increasing-loudness aftereffect. Two listeners were exposed to a 1-kHz adapting stimulus. From responses of ``growing softer'' or ``growing louder'' to test stimuli changing in intensity, nulls were calculated; test carrier frequencies ranged from 0.5 kHz to 2 kHz. Confirming the hypothesis, the monotic aftereffect peaked at around the 1-kHz test carrier frequency. In contrast, the interotic aftereffect showed little evidence of spectrally dependent peaking. Except when test and adaptation carrier frequencies differed markedly, the interotic aftereffect was smaller than the monotic aftereffect.
AB - Listeners exposed to a tone increasing in intensity report an aftereffect of decreasing loudness in a steady tone heard afterward. In the present study, the spectral dependence of the monotic decreasing-loudness aftereffect (adapting and testing 1 ear) was compared with (a) the spectral dependence of the interotic decreasing-loudness aftereffect (adapting 1 ear and testing the other ear) and (b) a non-adaptation control condition. The purpose was to test the hypothesis that the decreasing-loudness aftereffect may concern the sensory processing associated with dynamic localization. The hypothesis is based on two premises: (a) dynamic localization requires monaural sensory processing, and (b) sensory processing is reflected in spectral selectivity. Hence, the hypothesis would be supported if the monotic aftereffect were more spectrally dependent and stronger than the interotic aftereffect; A. H. Reinhardt-Rutland (1998) showed that the hypothesis is supported with regard to the related increasing-loudness aftereffect. Two listeners were exposed to a 1-kHz adapting stimulus. From responses of ``growing softer'' or ``growing louder'' to test stimuli changing in intensity, nulls were calculated; test carrier frequencies ranged from 0.5 kHz to 2 kHz. Confirming the hypothesis, the monotic aftereffect peaked at around the 1-kHz test carrier frequency. In contrast, the interotic aftereffect showed little evidence of spectrally dependent peaking. Except when test and adaptation carrier frequencies differed markedly, the interotic aftereffect was smaller than the monotic aftereffect.
U2 - 10.1080/00221300109598897
DO - 10.1080/00221300109598897
M3 - Article
SN - 1940-0888
VL - 128
SP - 43
EP - 56
JO - Journal of General Psychology
JF - Journal of General Psychology
IS - 1
ER -