The photocatalytic inactivation effect of Ag–TiO2 on β-amyloid peptide (1–42)

MH Ahmed, Tia E. Keyes, JA Byrne

Research output: Contribution to journalArticle

18 Citations (Scopus)

Abstract

Due to its low toxicity and excellent biocompatibility, titanium dioxide and its alloyed are widely used in biomedical applications. Furthermore, TiO2 can be excited by UV light to create charge carriers giving rise to photocatalytic redox reactions at its surface and photo-induced super-hydrophilicity. In this work, TiO2 films were modified with silver (Ag-TiO2) by the photocatalytic reduction of Ag+ from solution. The films and the adsorption of beta-amyloid (1-42), were studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). These films were confirmed to contain mainly anatase crystallites and the photo-reduced Ag was predominantly Ag-0 (>0%). Ag loading of the TiO2 markedly enhanced the Raman signal (ca. 15-fold), but caused significant changes to the protein spectrum indicating non-specific binding of beta-amyloid side chain residues to the silver. The amide modes remained well-resolved and were used to estimate the conformational change induced in the protein by the silver. Raman analysis showed an increase in the intensity of the band at similar to 1665 cm(-1) assigned to the disordered conformation of the beta-amyloid, suggesting that the adsorption to the silver sites induces conformational changes. Contaminated surfaces were exposed to UVB irradiation, caused further conformational changes in the beta-amyloid, which mildly inhibited amyloid fibril formation, thought to be induced through a photocatalytic mechanism. (C) 2012 Elsevier B.V. All rights reserved.
LanguageEnglish
Pages1
JournalJournal of Photochemistry and Photobiology A: Chemistry
Volume254
DOIs
Publication statusPublished - 2013

Fingerprint

Amyloid beta-Peptides
Amyloid
deactivation
Peptides
peptides
silver
Silver
Silver Proteins
Titanium dioxide
proteins
Adsorption
adsorption
Redox reactions
Hydrophilicity
biocompatibility
Proteins
Charge carriers
Biocompatibility
Crystallites
Amides

Cite this

@article{91e4913e337545efbd0ef99929ec5306,
title = "The photocatalytic inactivation effect of Ag–TiO2 on β-amyloid peptide (1–42)",
abstract = "Due to its low toxicity and excellent biocompatibility, titanium dioxide and its alloyed are widely used in biomedical applications. Furthermore, TiO2 can be excited by UV light to create charge carriers giving rise to photocatalytic redox reactions at its surface and photo-induced super-hydrophilicity. In this work, TiO2 films were modified with silver (Ag-TiO2) by the photocatalytic reduction of Ag+ from solution. The films and the adsorption of beta-amyloid (1-42), were studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). These films were confirmed to contain mainly anatase crystallites and the photo-reduced Ag was predominantly Ag-0 (>0{\%}). Ag loading of the TiO2 markedly enhanced the Raman signal (ca. 15-fold), but caused significant changes to the protein spectrum indicating non-specific binding of beta-amyloid side chain residues to the silver. The amide modes remained well-resolved and were used to estimate the conformational change induced in the protein by the silver. Raman analysis showed an increase in the intensity of the band at similar to 1665 cm(-1) assigned to the disordered conformation of the beta-amyloid, suggesting that the adsorption to the silver sites induces conformational changes. Contaminated surfaces were exposed to UVB irradiation, caused further conformational changes in the beta-amyloid, which mildly inhibited amyloid fibril formation, thought to be induced through a photocatalytic mechanism. (C) 2012 Elsevier B.V. All rights reserved.",
author = "MH Ahmed and Keyes, {Tia E.} and JA Byrne",
year = "2013",
doi = "10.1016/j.jphotochem.2012.12.019",
language = "English",
volume = "254",
pages = "1",

}

The photocatalytic inactivation effect of Ag–TiO2 on β-amyloid peptide (1–42). / Ahmed, MH; Keyes, Tia E.; Byrne, JA.

Vol. 254, 2013, p. 1.

Research output: Contribution to journalArticle

TY - JOUR

T1 - The photocatalytic inactivation effect of Ag–TiO2 on β-amyloid peptide (1–42)

AU - Ahmed, MH

AU - Keyes, Tia E.

AU - Byrne, JA

PY - 2013

Y1 - 2013

N2 - Due to its low toxicity and excellent biocompatibility, titanium dioxide and its alloyed are widely used in biomedical applications. Furthermore, TiO2 can be excited by UV light to create charge carriers giving rise to photocatalytic redox reactions at its surface and photo-induced super-hydrophilicity. In this work, TiO2 films were modified with silver (Ag-TiO2) by the photocatalytic reduction of Ag+ from solution. The films and the adsorption of beta-amyloid (1-42), were studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). These films were confirmed to contain mainly anatase crystallites and the photo-reduced Ag was predominantly Ag-0 (>0%). Ag loading of the TiO2 markedly enhanced the Raman signal (ca. 15-fold), but caused significant changes to the protein spectrum indicating non-specific binding of beta-amyloid side chain residues to the silver. The amide modes remained well-resolved and were used to estimate the conformational change induced in the protein by the silver. Raman analysis showed an increase in the intensity of the band at similar to 1665 cm(-1) assigned to the disordered conformation of the beta-amyloid, suggesting that the adsorption to the silver sites induces conformational changes. Contaminated surfaces were exposed to UVB irradiation, caused further conformational changes in the beta-amyloid, which mildly inhibited amyloid fibril formation, thought to be induced through a photocatalytic mechanism. (C) 2012 Elsevier B.V. All rights reserved.

AB - Due to its low toxicity and excellent biocompatibility, titanium dioxide and its alloyed are widely used in biomedical applications. Furthermore, TiO2 can be excited by UV light to create charge carriers giving rise to photocatalytic redox reactions at its surface and photo-induced super-hydrophilicity. In this work, TiO2 films were modified with silver (Ag-TiO2) by the photocatalytic reduction of Ag+ from solution. The films and the adsorption of beta-amyloid (1-42), were studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). These films were confirmed to contain mainly anatase crystallites and the photo-reduced Ag was predominantly Ag-0 (>0%). Ag loading of the TiO2 markedly enhanced the Raman signal (ca. 15-fold), but caused significant changes to the protein spectrum indicating non-specific binding of beta-amyloid side chain residues to the silver. The amide modes remained well-resolved and were used to estimate the conformational change induced in the protein by the silver. Raman analysis showed an increase in the intensity of the band at similar to 1665 cm(-1) assigned to the disordered conformation of the beta-amyloid, suggesting that the adsorption to the silver sites induces conformational changes. Contaminated surfaces were exposed to UVB irradiation, caused further conformational changes in the beta-amyloid, which mildly inhibited amyloid fibril formation, thought to be induced through a photocatalytic mechanism. (C) 2012 Elsevier B.V. All rights reserved.

U2 - 10.1016/j.jphotochem.2012.12.019

DO - 10.1016/j.jphotochem.2012.12.019

M3 - Article

VL - 254

SP - 1

ER -