The Interaction between Predator Strategy and Prey Competition in a pair of Multi-Predator Multi-Prey Lattices

Gavin Abernethy, Mark McCartney, David H. Glass

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

A computational study of a system of ten prey phenotypes and either one or ten predator phenotypes with a range offoraging behaviours, arranged on two separate one-dimensional lattices, is presented. Mutation between nearest neighboursalong the prey lattice occurs at a constant rate, and mutation may or may not be enabled for the predators. The signi canceof competition amongst the prey is investigated by testing a variety of distributions of the relative intraspeci c andinterspeci c competition. We also study the inuence this has on the survival and population size of predator phenotypeswith a variety of foraging strategies. Our results indicate that the distribution of competition amongst prey is of littlesigni cance, provided that intraspeci c is stronger than the interspeci c, and that it is typically preferable for a predatorto adopt a foraging strategy that scales linearly with prey population sizes if it is alone. In an environment of multiplepredator phenotypes, the least or most-focused predators are most likely to persist, dependent on the feeding parameter.
Original languageEnglish
Pages (from-to)9-33
JournalCommunications in Nonlinear Science and Numerical Simulation
Volume56
Early online date27 Jul 2017
DOIs
Publication statusPublished online - 27 Jul 2017

Keywords

  • computational ecology
  • nonlinear systems
  • coupled map lattices

Fingerprint

Dive into the research topics of 'The Interaction between Predator Strategy and Prey Competition in a pair of Multi-Predator Multi-Prey Lattices'. Together they form a unique fingerprint.

Cite this