The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocomposites

Yucai Shen, Eileen Harkin-Jones, Peter Hornsby, Tony McNally, Rund Abu-Zurayk

Research output: Contribution to journalArticle

32 Citations (Scopus)

Abstract

The inclusion of a synthetic fluoromica clay in PET affects its processability via biaxial stretching and stretching temperature (95°C and 102°C) and strain rate (1s -1 and 2s -1 ) influence the structuring and properties of the stretched material. The inclusion of clay has little effect on the temperature operating window for the PET-clay but it has a major effect on deformation behaviour which will necessitate the use of much higher forming forces during processing. The strain hardening behaviour of both the filled and unfilled materials is well correlated with tensile strength and tensile modulus. Increasing the stretching temperature to reduce stretching forces has a detrimental effect on clay exfoliation, mechanical and O 2 barrier properties. Increasing strain rate has a lesser effect on the strain hardening behaviour of the PET-clay compared with the pure PET and this is attributed to possible adiabatic heating in the PET-clay sample at the higher strain rate. The Halpin-Tsai model is shown to accurately predict the modulus enhancement of the PET-clay materials when a modified particle modulus rather than nominal clay modulus is used.

Original languageEnglish
Pages (from-to)758-764
Number of pages7
JournalComposites Science and Technology
Volume71
Issue number5
DOIs
Publication statusPublished - 22 Mar 2011

Keywords

  • A. Nanoclays
  • A. Nanocomposites
  • B. Mechanical properties
  • D. Transmission electron microscopy (TEM)

Fingerprint Dive into the research topics of 'The effect of temperature and strain rate on the deformation behaviour, structure development and properties of biaxially stretched PET-clay nanocomposites'. Together they form a unique fingerprint.

Cite this