The effect of sophorolipids against microbial biofilms on medical-grade silicone

C Ceresa, Letizia Fracchia, M Williams, Ibrahim Banat, MA Diaz De Rienzo

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)
107 Downloads (Pure)


Recent medical strategies rely on the search for effective antimicrobials as surface coatings to prevent and treat infections in humans and animals. Biosurfactants have recently been shown to have properties as antiadhesive and antibiofilm agents. Sophorolipids in particular are biosurfactant molecules known to act as therapeutic agents. This study aimed to evaluate antimicrobial properties of sophorolipids in medical-grade silicone discs using strains of clinical relevance. Sophorolipids were produced under fed batch conditions, ESI-MS analyses were carried out to confirm the congeners present in each formulation. Three different products were obtained SLA (acidic congeners), SL18 (lactonic congeners) and SLV (mixture of acidic and lactonic congeners) and were tested against Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 10145 and Candida albicans IHEM 2894. All three congener mixtures showed a biofilms disruption effect (> 0.1 % w/v) of 70 %, 75 % and 80 % for S. aureus, P. aeruginosa and C. albicans, respectively. On pre-coated silicone discs, biofilm formation of S. aureus was reduced by 75 % using SLA 0.8 % w/v. After 1.5 h the inhibition of C. albicans attachment was between 45–56 % whilst after 24 h incubation the percentage of inhibition for the cell attachment increased to 68–70 % when using SLA 0.8 % w/v. Finally, in co-incubation experiments SLA 0.05 % w/v significantly reduced the ability of S. aureus and C. albicans to form biofilms and to adhere to surfaces by 90–95 % at concentrations between 0.025–0.1 % w/v. In conclusion sophorolipids significantly reduced the cell attachment of both tested strains which suggests that these molecules could have a potential role as coating agents on medical grade silicone devices for the preventions of Gram positive bacteria and yeast infections.
Original languageEnglish
Pages (from-to)34-43
Number of pages10
JournalJournal of Biotechnology
Early online date27 Dec 2019
Publication statusPublished (in print/issue) - 10 Feb 2020

Bibliographical note

Funding Information:
The authors acknowledge the assistance of Dr Lakshmi Tripathi (University of Ulster), with the ESI-MS experiments; MSc Marta Lajarin-Cuesta (Liverpool John Moores University) with the sophorolipids production and Erica Tambone with the biofilm’s experiments. We also acknowledge the funding support from the Faculty of Science , Liverpool John Moores University ECR Fellowship 2017–2018, the support of the Compagnia di San Paolo (Excellent Young PI-2014 Call), and the support of the Università degli Studi del Piemonte Orientale through their Research Fellowship (Bando Fondazione CRT, Id. 393).

Funding Information:
The authors acknowledge the assistance of Dr Lakshmi Tripathi (University of Ulster), with th

Publisher Copyright:
© 2019


  • Biofilms
  • Candida albicans
  • Medical-grade silicone
  • Pseudomonas aeruginosa
  • Sophorolipids
  • Staphylococcus aureus


Dive into the research topics of 'The effect of sophorolipids against microbial biofilms on medical-grade silicone'. Together they form a unique fingerprint.

Cite this