The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram

Daniel Guldenring, Dewar Finlay, Raymond Bond, Alan Kennedy, James McLaughlin, Loriano Galeotti, David G. Strauss

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Research has shown that the ‘spatial QRS-T angle’ (SA) and the ‘spatial ventricular gradient’ (SVG) have clinical value in a number of different applications. The determination of the SA and the SVG requires vectorcardiographic data. Such data is seldom recorded in clinical practice. The SA and the SVG are therefore frequently derived from 12-lead electrocardiogram (ECG) data using linear lead transformation matrices. This research compares the performance of two previously published linear lead transformation matrices (Kors and ML2VCG) in deriving the SA and the SVG from Mason-Likar (ML) 12-lead ECG data. This comparison was performed through an analysis of the estimation errors that are made when deriving the SA and the SVG for all 181 subjects in the study population. The estimation errors were quantified as the systematic error (mean difference) and the random error (span of the Bland-Altman 95% limits of agreement). The random error was found to be the dominating error component for both the Kors and the ML2VCG matrix. The random error [ML2VCG; Kors; result of the paired, two-sided Pitman-Morgan test for statistical significance of differences in the error variance between ML2VCG and Kors] for the vectorcardiographic parameters SA, magnitude of the SVG, elevation of the SVG and azimuth of the SVG were found to be [37.33°; 50.52°; p <0.001], [30.17 mV ms; 39.09 mV ms; p <0.001], [36.77°; 47.62°; p = 0.001] and [63.45°; 80.32°; p <0.001] respectively. The findings of this research indicate that in comparison to the Kors matrix the ML2VCG provides greater precision for estimating the SA and SVG from ML 12-lead ECG data.
Original languageEnglish
Pages (from-to)1045-1052
Number of pages8
JournalJournal of Electrocardiology
Volume48
Issue number6
Early online date4 Aug 2015
DOIs
Publication statusPublished (in print/issue) - 1 Nov 2015

Keywords

  • Linear lead transformations
  • Estimation of the Frank VCG
  • Derivation of the Frank VCG
  • Spatial ventricular gradient
  • Spatial QRD-T angle
  • Mason-Likar 12-lead ECG

Fingerprint

Dive into the research topics of 'The derivation of the spatial QRS-T angle and the spatial ventricular gradient using the Mason–Likar 12-lead electrocardiogram'. Together they form a unique fingerprint.

Cite this