TY - JOUR
T1 - The changing landscape of motor neuron disease imaging
T2 - The transition from descriptive studies to precision clinical tools
AU - Bede, Peter
AU - Querin, Giorgia
AU - Pradat, Pierre François
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Purpose of review Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. Recent findings The natural history of MND is now evaluated by presymptomatic, postmortem and multi-Timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. Summary In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
AB - Purpose of review Neuroimaging in motor neuron disease (MND) has traditionally been seen as an academic tool with limited direct relevance to individualized patient care. This has changed radically in recent years as computational imaging has emerged as a viable clinical tool with true biomarker potential. This transition is not only fuelled by technological advances but also by important conceptual developments. Recent findings The natural history of MND is now evaluated by presymptomatic, postmortem and multi-Timepoint longitudinal imaging studies. The anatomical spectrum of MND imaging has also been expanded from an overwhelmingly cerebral focus to innovative spinal and muscle applications. In contrast to the group-comparisons of previous studies, machine-learning and deep-learning approaches are increasingly utilized to model real-life diagnostic dilemmas and aid prognostic classification. The focus from evaluating focal structural changes has shifted to the appraisal of network integrity by connectivity-based approaches. The armamentarium of MND imaging has also been complemented by novel PET-ligands, spinal toolboxes and the availability of magnetoencephalography and high-field magnetic resonance (MR) imaging platforms. Summary In addition to the technological and conceptual advances, collaborative multicentre research efforts have also gained considerable momentum. This opinion-piece reviews emerging trends in MND imaging and their implications to clinical care and drug development.
KW - Amyotrophic lateral sclerosis
KW - Biomarkers
KW - Motor neuron disease
KW - Mri
KW - Neuroimaging
UR - http://www.scopus.com/inward/record.url?scp=85049608539&partnerID=8YFLogxK
U2 - 10.1097/WCO.0000000000000569
DO - 10.1097/WCO.0000000000000569
M3 - Review article
C2 - 29750730
AN - SCOPUS:85049608539
SN - 1350-7540
VL - 31
SP - 431
EP - 438
JO - Current Opinion in Neurology
JF - Current Opinion in Neurology
IS - 4
ER -