Abstract
The attention assessment of an individual in following the motion of a target object provides valuable insights into understanding one’s behavioural patterns in cognitive disorders including Autism Spectrum Disorder (ASD). Existing frameworks often require dedicated devices for gaze capture, focus on stationary target objects, or fails to conduct a temporal analysis of the participant’s response. Thus, in order to address the persisting research gap in the analysis of video capture of a visual tracking task, this paper proposes a novel framework to analyse the temporal relationship between the 3D head pose angles and object displacement, and demonstrates its validity via application on the EYEDIAP video dataset. The conducted multivariate time-series analysis is two-fold; the statistical correlation computes the similarity between the time series as an overall measure of attention; and the Dynamic Time Warping (DTW) algorithm aligns the two sequences, and computes relevant temporal metrics. The temporal features of latency and maximum time of focus retention enabled an intragroup comparison between the performance of the participants. Further analysis disclosed valuable insights into the behavioural response of participants, including the superior response to horizontal motion of the target and the improvement in retention of focus on the vertical motion over time, implying that following a vertical target initially proved a challenging task.
Original language | English |
---|---|
Title of host publication | Image Analysis and Processing – ICIAP 2022 |
Editors | Stan Sclaroff, Cosimo Distante, Marco Leo, Giovanni M. Farinella, Federico Tombari |
Publisher | Springer Cham |
Pages | 324-336 |
Number of pages | 13 |
ISBN (Electronic) | 978-3-031-06433-3 |
ISBN (Print) | 978-3-031-06432-6 |
DOIs | |
Publication status | Published (in print/issue) - 15 May 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13233 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Bibliographical note
Funding Information:This research was supported by the Accelerating Higher Education Expansion and Development (AHEAD) Operation of the Ministry of Higher Education of Sri Lanka funded by the World Bank (https://ahead.lk/result-area-3/).
Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Automated gaze analysis
- Multivariate time-series analysis
- Head pose