Temporal variability in winter wave conditions and storminess in the northwest of Ireland

Carlos Loureiro, Andrew Cooper

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

Winter storms have significant morphological impacts in coastal areas, often leading to extensive infrastructure damage and socio-economic disruption. While storm-dominated coastal environments, such as the northwest coast of Ireland, are generally attuned to highly energetic wave conditions, morphological impacts can be intensified by changes in the frequency and sequencing of storm events, particularly during storm-groups or exceptional winter seasons. Aiming to assess the variability in frequency and sequencing of wintertime wave conditions and storms in the northwest of Ireland, we combine observational records (M4 buoy) with data from two independent wave reanalyses (ERA-Interim and WAVEWATCH III) and perform a statistical analysis of wave conditions over the past six decades. Both reanalyses represent observed wave heights with very good skill. Excellent agreement between modelled data and observations was identified up to the 99th percentile, despite a slight underestimation/overestimation by ERA-Interim/WAVEWATCH III for waves above the 90% exceedance level. The winter of 2014/15 was the most energetic on record (67 years), but not the stormiest. The results show that highly energetic and stormy winters occur in clusters during positive phases of the North Atlantic Oscillation. Significant positive temporal trends for winter wave height, number of storms per winter and average winter storm wave height, suggest that winters are becoming more energetic and stormier, with potential implications for the erosion and recovery of coastal systems in the northwest of Ireland.
LanguageEnglish
Number of pages19
JournalIrish Geography
Volume51
Issue number2
Publication statusPublished - 30 Nov 2018

Fingerprint

Ireland
winter
wave height
energetics
statistical analysis
erosion
damages
infrastructure
event
trend
economics
North Atlantic Oscillation
Group
coastal zone
damage
coast

Keywords

  • Northeast Atlantic
  • seasonality
  • winter storms
  • storm-groups
  • coastal impacts

Cite this

@article{24d0738af1454c798187789f9e5f90e0,
title = "Temporal variability in winter wave conditions and storminess in the northwest of Ireland",
abstract = "Winter storms have significant morphological impacts in coastal areas, often leading to extensive infrastructure damage and socio-economic disruption. While storm-dominated coastal environments, such as the northwest coast of Ireland, are generally attuned to highly energetic wave conditions, morphological impacts can be intensified by changes in the frequency and sequencing of storm events, particularly during storm-groups or exceptional winter seasons. Aiming to assess the variability in frequency and sequencing of wintertime wave conditions and storms in the northwest of Ireland, we combine observational records (M4 buoy) with data from two independent wave reanalyses (ERA-Interim and WAVEWATCH III) and perform a statistical analysis of wave conditions over the past six decades. Both reanalyses represent observed wave heights with very good skill. Excellent agreement between modelled data and observations was identified up to the 99th percentile, despite a slight underestimation/overestimation by ERA-Interim/WAVEWATCH III for waves above the 90{\%} exceedance level. The winter of 2014/15 was the most energetic on record (67 years), but not the stormiest. The results show that highly energetic and stormy winters occur in clusters during positive phases of the North Atlantic Oscillation. Significant positive temporal trends for winter wave height, number of storms per winter and average winter storm wave height, suggest that winters are becoming more energetic and stormier, with potential implications for the erosion and recovery of coastal systems in the northwest of Ireland.",
keywords = "Northeast Atlantic, seasonality, winter storms, storm-groups, coastal impacts",
author = "Carlos Loureiro and Andrew Cooper",
year = "2018",
month = "11",
day = "30",
language = "English",
volume = "51",
journal = "Irish Geography",
issn = "0075-0778",
number = "2",

}

Temporal variability in winter wave conditions and storminess in the northwest of Ireland. / Loureiro, Carlos; Cooper, Andrew.

In: Irish Geography, Vol. 51, No. 2, 30.11.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Temporal variability in winter wave conditions and storminess in the northwest of Ireland

AU - Loureiro, Carlos

AU - Cooper, Andrew

PY - 2018/11/30

Y1 - 2018/11/30

N2 - Winter storms have significant morphological impacts in coastal areas, often leading to extensive infrastructure damage and socio-economic disruption. While storm-dominated coastal environments, such as the northwest coast of Ireland, are generally attuned to highly energetic wave conditions, morphological impacts can be intensified by changes in the frequency and sequencing of storm events, particularly during storm-groups or exceptional winter seasons. Aiming to assess the variability in frequency and sequencing of wintertime wave conditions and storms in the northwest of Ireland, we combine observational records (M4 buoy) with data from two independent wave reanalyses (ERA-Interim and WAVEWATCH III) and perform a statistical analysis of wave conditions over the past six decades. Both reanalyses represent observed wave heights with very good skill. Excellent agreement between modelled data and observations was identified up to the 99th percentile, despite a slight underestimation/overestimation by ERA-Interim/WAVEWATCH III for waves above the 90% exceedance level. The winter of 2014/15 was the most energetic on record (67 years), but not the stormiest. The results show that highly energetic and stormy winters occur in clusters during positive phases of the North Atlantic Oscillation. Significant positive temporal trends for winter wave height, number of storms per winter and average winter storm wave height, suggest that winters are becoming more energetic and stormier, with potential implications for the erosion and recovery of coastal systems in the northwest of Ireland.

AB - Winter storms have significant morphological impacts in coastal areas, often leading to extensive infrastructure damage and socio-economic disruption. While storm-dominated coastal environments, such as the northwest coast of Ireland, are generally attuned to highly energetic wave conditions, morphological impacts can be intensified by changes in the frequency and sequencing of storm events, particularly during storm-groups or exceptional winter seasons. Aiming to assess the variability in frequency and sequencing of wintertime wave conditions and storms in the northwest of Ireland, we combine observational records (M4 buoy) with data from two independent wave reanalyses (ERA-Interim and WAVEWATCH III) and perform a statistical analysis of wave conditions over the past six decades. Both reanalyses represent observed wave heights with very good skill. Excellent agreement between modelled data and observations was identified up to the 99th percentile, despite a slight underestimation/overestimation by ERA-Interim/WAVEWATCH III for waves above the 90% exceedance level. The winter of 2014/15 was the most energetic on record (67 years), but not the stormiest. The results show that highly energetic and stormy winters occur in clusters during positive phases of the North Atlantic Oscillation. Significant positive temporal trends for winter wave height, number of storms per winter and average winter storm wave height, suggest that winters are becoming more energetic and stormier, with potential implications for the erosion and recovery of coastal systems in the northwest of Ireland.

KW - Northeast Atlantic

KW - seasonality

KW - winter storms

KW - storm-groups

KW - coastal impacts

M3 - Article

VL - 51

JO - Irish Geography

T2 - Irish Geography

JF - Irish Geography

SN - 0075-0778

IS - 2

ER -