Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality

Vahab Youssofzadeh, G Prasad, Muhammad Naeem, KongFatt Wong-Lin

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Partial Granger causality (PGC) has been applied to analyse causal functional neural connectivity after effectively mitigating confounding influences caused by endogenous latent variables and exogenous environmental inputs. However, it is not known how this connectivity obtained from PGC evolves over time. Furthermore, PGC has yet to be tested on realistic nonlinear neural circuit models and multi-trial event-related potentials (ERPs) data. In this work, we first applied a time-domain PGC technique to evaluate simulated neural circuit models, and demonstrated that the PGC measure is more accurate and robust in detecting connectivity patterns as compared to conditional Granger causality and partial directed coherence, especially when the circuit is intrinsically nonlinear. Moreover, the connectivity in PGC settles faster into a stable and correct configuration over time. After method verification, we applied PGC to reveal the causal connections of ERP trials of a mismatch negativity auditory oddball paradigm. The PGC analysis revealed a significant bilateral but asymmetrical localised activity in the temporal lobe close to the auditory cortex, and causal influences in the frontal, parietal and cingulate cortical areas, consistent with previous studies. Interestingly, the time to reach a stable connectivity configuration (~250-300 ms) coincides with the deviation of ensemble ERPs of oddball from standard tones. Finally, using a sliding time window, we showed higher resolution dynamics of causal connectivity within an ERP trial. In summary, time-domain PGC is promising in deciphering directedfunctional connectivity in nonlinear and ERP trials accurately, and at a sufficiently early stage. This data-driven approach can reduce computational time, and determine the key architecture for neural circuit modelling.
Original languageEnglish
Pages (from-to)99-120
Number of pages21
JournalNeuroinformatics
Volume14
Issue number1
DOIs
Publication statusE-pub ahead of print - 15 Oct 2015

Keywords

  • Partial Granger causality (PGC)
  • event-related potential (ERP)
  • conditional Granger causality (CGC)
  • mismatch negativity (MMN)
  • auditory oddball paradigm (AOP)

Fingerprint Dive into the research topics of 'Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality'. Together they form a unique fingerprint.

  • Cite this