Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet

Anna Liguori, Tommaso Gallingani, Dilli Babu Padmanaban, Romolo Laurita, Tamilselvan Velusamy, Gunisha Jain, Manuel Macias-Montero, Davide Mariotti, Matteo Gherardi

Research output: Contribution to journalArticle

3 Citations (Scopus)
43 Downloads (Pure)

Abstract

The influence of the liquid composition on the chemical and morphological properties of copper-based nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. The process was studied using four distinct electrolyte solutions composed of distilled water and either NaClthinspace+thinspaceNaOH, NaCl only or NaOH only at two different concentrations, without the addition of any copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)2 phases) were produced from NaClthinspace+thinspaceNaOH containing solutions, mainly CuO and CuCl2 structures were synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaClthinspace+thinspaceNaOH and NaCl containing solutions. Reaction pathways leading to the formation of the nanostructures are proposed and discussed.
Original languageEnglish
Pages (from-to)1209-1222
Number of pages14
JournalPlasma Chemistry and Plasma Processing
Volume38
Issue number6
Early online date17 Aug 2018
DOIs
Publication statusPublished - Nov 2018

Keywords

  • Non-equilibrium atmospheric pressure plasma
  • Synthesis of nanostructures
  • Plasma–liquid interactions
  • Reaction pathways
  • X-ray photoelectron spectroscopy
  • Transmission electron microscopy

Fingerprint Dive into the research topics of 'Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet'. Together they form a unique fingerprint.

Cite this