TY - JOUR
T1 - Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet
AU - Liguori, Anna
AU - Gallingani, Tommaso
AU - Padmanaban, Dilli Babu
AU - Laurita, Romolo
AU - Velusamy, Tamilselvan
AU - Jain, Gunisha
AU - Macias-Montero, Manuel
AU - Mariotti, Davide
AU - Gherardi, Matteo
PY - 2018/11
Y1 - 2018/11
N2 - The influence of the liquid composition on the chemical and morphological properties of copper-based nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. The process was studied using four distinct electrolyte solutions composed of distilled water and either NaClthinspace+thinspaceNaOH, NaCl only or NaOH only at two different concentrations, without the addition of any copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)2 phases) were produced from NaClthinspace+thinspaceNaOH containing solutions, mainly CuO and CuCl2 structures were synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaClthinspace+thinspaceNaOH and NaCl containing solutions. Reaction pathways leading to the formation of the nanostructures are proposed and discussed.
AB - The influence of the liquid composition on the chemical and morphological properties of copper-based nanostructures synthesized by a non-equilibrium atmospheric plasma treatment is investigated and discussed. The synthesis approach is simple and environmentally friendly, employs a non-equilibrium nanopulsed atmospheric pressure plasma jet as a contactless cathode and a Cu foil as immersed anode. The process was studied using four distinct electrolyte solutions composed of distilled water and either NaClthinspace+thinspaceNaOH, NaCl only or NaOH only at two different concentrations, without the addition of any copper salts. CuO crystalline structures with limited impurities (e.g. Cu and Cu(OH)2 phases) were produced from NaClthinspace+thinspaceNaOH containing solutions, mainly CuO and CuCl2 structures were synthesized in the electrolyte solution containing only NaCl and no synthesis occurred in solutions containing only NaOH. Both aggregated and dispersed nanostructures were produced in the NaClthinspace+thinspaceNaOH and NaCl containing solutions. Reaction pathways leading to the formation of the nanostructures are proposed and discussed.
KW - Non-equilibrium atmospheric pressure plasma
KW - Synthesis of nanostructures
KW - Plasma–liquid interactions
KW - Reaction pathways
KW - X-ray photoelectron spectroscopy
KW - Transmission electron microscopy
UR - https://doi.org/10.1007/s11090-018-9924-0
U2 - 10.1007/s11090-018-9924-0
DO - 10.1007/s11090-018-9924-0
M3 - Article
VL - 38
SP - 1209
EP - 1222
JO - Plasma Chemistry and Plasma Processing
JF - Plasma Chemistry and Plasma Processing
SN - 0272-4324
IS - 6
ER -