TY - JOUR
T1 - Synthesis and characterisation of nanophase hydroxyapatite co-substitutedwith strontium and zinc
AU - Lowry, Naomi
AU - Brolly, Mark
AU - Han, Yisong
AU - McKillop, Stephen
AU - Meenan, Brian
AU - Boyd, Adrian
PY - 2018/5/31
Y1 - 2018/5/31
N2 - In order to develop new bioactive calcium phosphate (CaP) materials to repair bone defects, it is important to ensure these materials more closely mimic the non-stoichiometric nature of biological hydroxyapatite (HA). Typically, biological HA combines various CaP phases with different impurity ions, which substitute within the HA lattice, including strontium (Sr2+), zinc (Zn2+), magnesium (Mg2+), carbonate (CO32-) and fluoride (F-), but to name a few. In addition to this biological HA have dimensions in the nanometre (nm) range, usually 60 nm in length by 5–20 nm wide. Both the effects of ion substitution and the nano-size crystals are seen as important factors for enhancing their potential biofunctionality. The driving hypothesis was to successfully synthesise nanoscale hydroxyapatite (nHA), co-substituted with strontium (Sr2+) and zinc (Zn2+) ions in varying oncentrations using an aqueous precipitation method and to understand their chemical and physical properties. The materials were characterised using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) techniques. The FTIR, XRD and XPS results confirmed that the nHA was successfully co-substituted with Sr2+ and Zn2+, replacing Ca2+ within the nHA lattice at varying concentrations. The FTIR results confirmed that all of the samples were carbonated, with a significant loss of hydroxylation as a consequence of the incorporation of Sr2+ and Zn2+ into the nHA lattice. The TEM results showed that each sample produced was nano-sized, with the Sr/Zn-10% nHA having the smallest sized crystals approximately 17.6±3.3 nm long and 10.2±1.4 nm wide. None of the materials synthesised here in this study contained any other impurity CaP phases. Therefore, this study has shown that co-substituted nHA can be prepared, and that the degree of substitution (and the substituting ion) can have a profound effect on the attendant materials’ properties.
AB - In order to develop new bioactive calcium phosphate (CaP) materials to repair bone defects, it is important to ensure these materials more closely mimic the non-stoichiometric nature of biological hydroxyapatite (HA). Typically, biological HA combines various CaP phases with different impurity ions, which substitute within the HA lattice, including strontium (Sr2+), zinc (Zn2+), magnesium (Mg2+), carbonate (CO32-) and fluoride (F-), but to name a few. In addition to this biological HA have dimensions in the nanometre (nm) range, usually 60 nm in length by 5–20 nm wide. Both the effects of ion substitution and the nano-size crystals are seen as important factors for enhancing their potential biofunctionality. The driving hypothesis was to successfully synthesise nanoscale hydroxyapatite (nHA), co-substituted with strontium (Sr2+) and zinc (Zn2+) ions in varying oncentrations using an aqueous precipitation method and to understand their chemical and physical properties. The materials were characterised using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) techniques. The FTIR, XRD and XPS results confirmed that the nHA was successfully co-substituted with Sr2+ and Zn2+, replacing Ca2+ within the nHA lattice at varying concentrations. The FTIR results confirmed that all of the samples were carbonated, with a significant loss of hydroxylation as a consequence of the incorporation of Sr2+ and Zn2+ into the nHA lattice. The TEM results showed that each sample produced was nano-sized, with the Sr/Zn-10% nHA having the smallest sized crystals approximately 17.6±3.3 nm long and 10.2±1.4 nm wide. None of the materials synthesised here in this study contained any other impurity CaP phases. Therefore, this study has shown that co-substituted nHA can be prepared, and that the degree of substitution (and the substituting ion) can have a profound effect on the attendant materials’ properties.
KW - Bioceramic
KW - Nano-hydroxyapatite
KW - Co-substitution
KW - Strontium
KW - Zinc
UR - https://www.sciencedirect.com/science/article/pii/S0272884218302190
U2 - 10.1016/j.ceramint.2018.01.206
DO - 10.1016/j.ceramint.2018.01.206
M3 - Article
SN - 0272-8842
VL - 44
SP - 7761
EP - 7770
JO - Ceramics International
JF - Ceramics International
IS - 7
ER -