Surface modified biodegradable electrospun membranes as a carrier for human embryonic stem cell derived retinal pigment epithelial cells

P Porter, A Sorkio, K Juuti-Uusitalo, BJ Meenan, H Skottman, GA Burke

Research output: Contribution to journalArticle

25 Citations (Scopus)


Human embryonic stem cell derived retinal pigment epithelial (hESC-RPE) cells are currently undergoing clinical trials to treat retinal degenerative diseases. Transplantation of hESC-RPE cells in conjuction with a supportive biomaterial carrier hold great potential as a future treatment for retinal degeneration. However, there has been no such biodegradable material which could support the growth and maturation of hESC-RPE cells so far. The primary aim of this work was to create a thin porous poly (L-lactide-co-caprolactone) (PLCL) membrane that could promote attachment, proliferation and maturation of the hESC-RPE cells in serum-free culture conditions. The PLCL membranes were modified by atmospheric pressure plasma processing and coated with collagen IV to enhance cell growth and maturation. Permeability of the membranes was analysed with Ussing chamber system. Analysis with scanning electron microscopy, contact angle measurement, atomic force microscopy and X-ray photoelectron spectroscopy demonstrated that plasma surface treatment augments the surface properties of the membrane, which enhances the binding and conformation of the protein. Cell proliferation assays, RT-PCR, indirect immunofluoresence staining, trans-epithelial electrical resistance measurements as well as in vitro phagocytosis assay clearly demonstrated that the plasma treated PLCL membranes supported the adherence, proliferation, maturation and functionality of hESC-RPE cells in serum-free culture conditions. Here, we report for the first time, how PLCL membranes can be modified with atmospheric pressure plasma processing to enable the formation of a functional hESC-RPE monolayer on a porous biodegradable substrate, which have a potential as a tissue engineered construct for regenerative retinal repair applications.
Original languageEnglish
Pages (from-to)2301-2314
JournalTissue Engineering Part A.
Issue number17-18
Early online date30 Jun 2015
Publication statusPublished - 27 Aug 2015



  • Tissue engineering
  • Age-related macular degeneration
  • biomaterial

Cite this