Surface extinction of flames on solids: Some interesting results

M.A Delichatsios

    Research output: Contribution to journalArticle

    12 Citations (Scopus)

    Abstract

    It is proposed that extinction of flames near solid surfaces can be effectively investigated by separating the gaseous reactions from the energy and mass balance at the surface. This separation is implemented by simulating the flow of pyrolysis gases from the solid through a controlled supply of flammable gas issuing from a porous burner kept at a fixed surface temperature. The separation simplifies the interpretation of experiments, the analysis of experimental results and applications in determining the material extinction properties. It is founded on the observation that flame extinction on a solid occurs at that rate of mass pyrolysis (or equivalently at that mass supply rate of the fuel in the porous burner) where the convective heat flux to the solid (or the porous burner) takes its maximum value. Convective heat flux is the dominant heat transfer mode at surface extinction conditions because the flame being close to the surface is blue so that radiation from the flames is negligible. The convective heat flux from the flames increases as the mass supply rate decreases until it reaches a maximum value and then decays because the chemical reactions are quenched. Without loss of generality in underpinning the controlling parameters, the analysis makes use of a two-dimensional stagnation flow over a porous burner and assumes a simple one step reaction between the flammable gas and the air. The mass flux and the temperature at the solid surface and the temperature and the oxygen concentration at infinity are chosen as the independent variables so that the flame sheet is located at a fixed value of the conserved scalar. First, it is shown that there is a finite oxygen concentration at the wall and then, that there is a regime where the critical mass now rate, the heat flux and the oxygen concentration at the wall are independent of the Damkohler number at extinction but they depend on the order of the chemical reaction. This result, supported by experimental observations and numerical calculations, has significant importance in determining the extinction properties of materials. (c) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
    LanguageEnglish
    Pages2749-2756
    JournalProceedings of the Combustion Institute
    Volume31
    Issue numberPart 2
    DOIs
    Publication statusPublished - 2007

    Fingerprint

    flames
    extinction
    burners
    heat flux
    flammable gases
    solid surfaces
    surface temperature
    pyrolysis
    chemical reactions
    oxygen
    stagnation flow
    Damkohler number
    critical mass
    mass balance
    infinity
    heat transfer
    scalars
    temperature
    air
    decay

    Cite this

    Delichatsios, M.A. / Surface extinction of flames on solids: Some interesting results. In: Proceedings of the Combustion Institute. 2007 ; Vol. 31, No. Part 2. pp. 2749-2756.
    @article{ed838830cc674d93b395ff62a9478c0a,
    title = "Surface extinction of flames on solids: Some interesting results",
    abstract = "It is proposed that extinction of flames near solid surfaces can be effectively investigated by separating the gaseous reactions from the energy and mass balance at the surface. This separation is implemented by simulating the flow of pyrolysis gases from the solid through a controlled supply of flammable gas issuing from a porous burner kept at a fixed surface temperature. The separation simplifies the interpretation of experiments, the analysis of experimental results and applications in determining the material extinction properties. It is founded on the observation that flame extinction on a solid occurs at that rate of mass pyrolysis (or equivalently at that mass supply rate of the fuel in the porous burner) where the convective heat flux to the solid (or the porous burner) takes its maximum value. Convective heat flux is the dominant heat transfer mode at surface extinction conditions because the flame being close to the surface is blue so that radiation from the flames is negligible. The convective heat flux from the flames increases as the mass supply rate decreases until it reaches a maximum value and then decays because the chemical reactions are quenched. Without loss of generality in underpinning the controlling parameters, the analysis makes use of a two-dimensional stagnation flow over a porous burner and assumes a simple one step reaction between the flammable gas and the air. The mass flux and the temperature at the solid surface and the temperature and the oxygen concentration at infinity are chosen as the independent variables so that the flame sheet is located at a fixed value of the conserved scalar. First, it is shown that there is a finite oxygen concentration at the wall and then, that there is a regime where the critical mass now rate, the heat flux and the oxygen concentration at the wall are independent of the Damkohler number at extinction but they depend on the order of the chemical reaction. This result, supported by experimental observations and numerical calculations, has significant importance in determining the extinction properties of materials. (c) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.",
    author = "M.A Delichatsios",
    year = "2007",
    doi = "10.1016/j.proci.2006.08.032",
    language = "English",
    volume = "31",
    pages = "2749--2756",
    journal = "Proceedings of the Combustion Institute",
    issn = "1540-7489",
    publisher = "Elsevier",
    number = "Part 2",

    }

    Surface extinction of flames on solids: Some interesting results. / Delichatsios, M.A.

    In: Proceedings of the Combustion Institute, Vol. 31, No. Part 2, 2007, p. 2749-2756.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Surface extinction of flames on solids: Some interesting results

    AU - Delichatsios, M.A

    PY - 2007

    Y1 - 2007

    N2 - It is proposed that extinction of flames near solid surfaces can be effectively investigated by separating the gaseous reactions from the energy and mass balance at the surface. This separation is implemented by simulating the flow of pyrolysis gases from the solid through a controlled supply of flammable gas issuing from a porous burner kept at a fixed surface temperature. The separation simplifies the interpretation of experiments, the analysis of experimental results and applications in determining the material extinction properties. It is founded on the observation that flame extinction on a solid occurs at that rate of mass pyrolysis (or equivalently at that mass supply rate of the fuel in the porous burner) where the convective heat flux to the solid (or the porous burner) takes its maximum value. Convective heat flux is the dominant heat transfer mode at surface extinction conditions because the flame being close to the surface is blue so that radiation from the flames is negligible. The convective heat flux from the flames increases as the mass supply rate decreases until it reaches a maximum value and then decays because the chemical reactions are quenched. Without loss of generality in underpinning the controlling parameters, the analysis makes use of a two-dimensional stagnation flow over a porous burner and assumes a simple one step reaction between the flammable gas and the air. The mass flux and the temperature at the solid surface and the temperature and the oxygen concentration at infinity are chosen as the independent variables so that the flame sheet is located at a fixed value of the conserved scalar. First, it is shown that there is a finite oxygen concentration at the wall and then, that there is a regime where the critical mass now rate, the heat flux and the oxygen concentration at the wall are independent of the Damkohler number at extinction but they depend on the order of the chemical reaction. This result, supported by experimental observations and numerical calculations, has significant importance in determining the extinction properties of materials. (c) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

    AB - It is proposed that extinction of flames near solid surfaces can be effectively investigated by separating the gaseous reactions from the energy and mass balance at the surface. This separation is implemented by simulating the flow of pyrolysis gases from the solid through a controlled supply of flammable gas issuing from a porous burner kept at a fixed surface temperature. The separation simplifies the interpretation of experiments, the analysis of experimental results and applications in determining the material extinction properties. It is founded on the observation that flame extinction on a solid occurs at that rate of mass pyrolysis (or equivalently at that mass supply rate of the fuel in the porous burner) where the convective heat flux to the solid (or the porous burner) takes its maximum value. Convective heat flux is the dominant heat transfer mode at surface extinction conditions because the flame being close to the surface is blue so that radiation from the flames is negligible. The convective heat flux from the flames increases as the mass supply rate decreases until it reaches a maximum value and then decays because the chemical reactions are quenched. Without loss of generality in underpinning the controlling parameters, the analysis makes use of a two-dimensional stagnation flow over a porous burner and assumes a simple one step reaction between the flammable gas and the air. The mass flux and the temperature at the solid surface and the temperature and the oxygen concentration at infinity are chosen as the independent variables so that the flame sheet is located at a fixed value of the conserved scalar. First, it is shown that there is a finite oxygen concentration at the wall and then, that there is a regime where the critical mass now rate, the heat flux and the oxygen concentration at the wall are independent of the Damkohler number at extinction but they depend on the order of the chemical reaction. This result, supported by experimental observations and numerical calculations, has significant importance in determining the extinction properties of materials. (c) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

    U2 - 10.1016/j.proci.2006.08.032

    DO - 10.1016/j.proci.2006.08.032

    M3 - Article

    VL - 31

    SP - 2749

    EP - 2756

    JO - Proceedings of the Combustion Institute

    T2 - Proceedings of the Combustion Institute

    JF - Proceedings of the Combustion Institute

    SN - 1540-7489

    IS - Part 2

    ER -