Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing.

Shanting Zhao, Daniel Studer, Xuejun Chai, Werner Graber, Nils Brose, Sigrun Nestel, Christina Young, E. Patricia Rodriguez, Kurt Saetzler, Michael Frotscher

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Despite recent progress in fluorescence microscopy techniques, electron microscopy (EM) is still superior in the simultaneous analysis of all tissue components at high resolution. However, it is unclear to what extent conventional fixation for EM using aldehydes results in tissue alteration. Here, we made an attempt to minimize tissue alteration by using rapid high-pressure freezing (HPF) of hippocampal slice cultures. We used this approach to monitor fine-structural changes at hippocampal mossy fiber synapses associated with chemically induced long-term potentiation (LTP). Synaptic plasticity in LTP has been known to involve structural changes at synapses including reorganization of the actin cytoskeleton and de novo formation of spines. While LTP-induced formation and growth of postsynaptic spines have been reported, little is known about associated structural changes in presynaptic boutons. Mossy fiber synapses are assumed to exhibit presynaptic LTP expression and are easily identified by EM. In slice cultures from wild-type mice, we found that chemical LTP increased the length of the presynaptic membrane of mossy fiber boutons, associated with a de novo formation of small spines and an increase in the number of active zones. Of note, these changes were not observed in slice cultures from Munc13-1 knock-out mutants exhibiting defective vesicle priming. These findings show that activation of hippocampal mossy fibers induces pre- and postsynaptic structural changes at mossy fiber synapses that can be monitored by EM. J. Comp. Neurol., 2012. © 2012 Wiley-Liss, Inc.
Original languageEnglish
Pages (from-to)2340-2351
JournalJournal of Comparative Neurology
Volume520
Issue number11
DOIs
Publication statusPublished - Aug 2012

Fingerprint Dive into the research topics of 'Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing.'. Together they form a unique fingerprint.

  • Cite this

    Zhao, S., Studer, D., Chai, X., Graber, W., Brose, N., Nestel, S., Young, C., Rodriguez, E. P., Saetzler, K., & Frotscher, M. (2012). Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing. Journal of Comparative Neurology, 520(11), 2340-2351. https://doi.org/10.1002/cne.23040