Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser deposition

R McCann, SS Roy, P Papakonstantinou, JAD McLaughlin, SC Ray

Research output: Contribution to journalArticle

51 Citations (Scopus)

Abstract

The effect of nitrogen partial pressure on amorphous carbon nitride (a-CNx) (0.0 <= x <= 0.17) and laser fluence on amorphous carbon (a-C) films prepared by ultrafast high repetition rate pulsed laser deposition has been studied. The chemical bonding structure of the films was investigated by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) analysis. XPS studies of films revealed an increase in the CN sites at the expense of CC bonded carbon sites as nitrogen content in the films increased. Films (a-C) prepared as a function of laser fluence showed an increase in sp(3)-bonded carbon as laser fluence was increased from 0.36 to 1.7 J/cm(2). The I-D/I-G ratio and G peak position increased as a function of nitrogen whereas the full width at half maximum (FWHM) of the G peak decreased. This is indicative of either an increase in the size or number of the sp(2) sites. Films prepared as a function of laser fluence revealed a decrease of the I-D/I-G ratio and an increase in the FWHM of the G peak. The use of two visible excitation wavelengths when analyzing the samples indicated a esonant process. FTIR analysis revealed an increase in the peaks attributed to C=N bonds as well as indicated a tiny amount of C=N bonds within the nitrogen-doped films. Additionally, surface morphology analysis showed a greater particle density on films prepared at the highest laser energy in comparison to those prepared at lower fluences. Film hardness characterized by nanoindentation revealed that films became softer as a function of nitrogen content. (C) 2005 American Institute of Physics.
LanguageEnglish
Pages73522-1
JournalJournal of Applied Physics
Volume97
Issue number7
DOIs
Publication statusPublished - Apr 2005

Fingerprint

spectroscopic analysis
pulsed laser deposition
repetition
carbon
fluence
nitrogen
lasers
x ray spectroscopy
photoelectron spectroscopy
carbon nitrides
nanoindentation
partial pressure
hardness
Raman spectroscopy

Cite this

@article{1e8a86b20b99407b9828680b7337647f,
title = "Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser deposition",
abstract = "The effect of nitrogen partial pressure on amorphous carbon nitride (a-CNx) (0.0 <= x <= 0.17) and laser fluence on amorphous carbon (a-C) films prepared by ultrafast high repetition rate pulsed laser deposition has been studied. The chemical bonding structure of the films was investigated by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) analysis. XPS studies of films revealed an increase in the CN sites at the expense of CC bonded carbon sites as nitrogen content in the films increased. Films (a-C) prepared as a function of laser fluence showed an increase in sp(3)-bonded carbon as laser fluence was increased from 0.36 to 1.7 J/cm(2). The I-D/I-G ratio and G peak position increased as a function of nitrogen whereas the full width at half maximum (FWHM) of the G peak decreased. This is indicative of either an increase in the size or number of the sp(2) sites. Films prepared as a function of laser fluence revealed a decrease of the I-D/I-G ratio and an increase in the FWHM of the G peak. The use of two visible excitation wavelengths when analyzing the samples indicated a esonant process. FTIR analysis revealed an increase in the peaks attributed to C=N bonds as well as indicated a tiny amount of C=N bonds within the nitrogen-doped films. Additionally, surface morphology analysis showed a greater particle density on films prepared at the highest laser energy in comparison to those prepared at lower fluences. Film hardness characterized by nanoindentation revealed that films became softer as a function of nitrogen content. (C) 2005 American Institute of Physics.",
author = "R McCann and SS Roy and P Papakonstantinou and JAD McLaughlin and SC Ray",
year = "2005",
month = "4",
doi = "10.1063/1.874300",
language = "English",
volume = "97",
pages = "73522--1",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics",
number = "7",

}

Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser deposition. / McCann, R; Roy, SS; Papakonstantinou, P; McLaughlin, JAD; Ray, SC.

In: Journal of Applied Physics, Vol. 97, No. 7, 04.2005, p. 73522-1.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Spectroscopic analysis of a-C and a-CNx films prepared by ultrafast high repetition rate pulsed laser deposition

AU - McCann, R

AU - Roy, SS

AU - Papakonstantinou, P

AU - McLaughlin, JAD

AU - Ray, SC

PY - 2005/4

Y1 - 2005/4

N2 - The effect of nitrogen partial pressure on amorphous carbon nitride (a-CNx) (0.0 <= x <= 0.17) and laser fluence on amorphous carbon (a-C) films prepared by ultrafast high repetition rate pulsed laser deposition has been studied. The chemical bonding structure of the films was investigated by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) analysis. XPS studies of films revealed an increase in the CN sites at the expense of CC bonded carbon sites as nitrogen content in the films increased. Films (a-C) prepared as a function of laser fluence showed an increase in sp(3)-bonded carbon as laser fluence was increased from 0.36 to 1.7 J/cm(2). The I-D/I-G ratio and G peak position increased as a function of nitrogen whereas the full width at half maximum (FWHM) of the G peak decreased. This is indicative of either an increase in the size or number of the sp(2) sites. Films prepared as a function of laser fluence revealed a decrease of the I-D/I-G ratio and an increase in the FWHM of the G peak. The use of two visible excitation wavelengths when analyzing the samples indicated a esonant process. FTIR analysis revealed an increase in the peaks attributed to C=N bonds as well as indicated a tiny amount of C=N bonds within the nitrogen-doped films. Additionally, surface morphology analysis showed a greater particle density on films prepared at the highest laser energy in comparison to those prepared at lower fluences. Film hardness characterized by nanoindentation revealed that films became softer as a function of nitrogen content. (C) 2005 American Institute of Physics.

AB - The effect of nitrogen partial pressure on amorphous carbon nitride (a-CNx) (0.0 <= x <= 0.17) and laser fluence on amorphous carbon (a-C) films prepared by ultrafast high repetition rate pulsed laser deposition has been studied. The chemical bonding structure of the films was investigated by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Fourier transform infrared (FTIR) analysis. XPS studies of films revealed an increase in the CN sites at the expense of CC bonded carbon sites as nitrogen content in the films increased. Films (a-C) prepared as a function of laser fluence showed an increase in sp(3)-bonded carbon as laser fluence was increased from 0.36 to 1.7 J/cm(2). The I-D/I-G ratio and G peak position increased as a function of nitrogen whereas the full width at half maximum (FWHM) of the G peak decreased. This is indicative of either an increase in the size or number of the sp(2) sites. Films prepared as a function of laser fluence revealed a decrease of the I-D/I-G ratio and an increase in the FWHM of the G peak. The use of two visible excitation wavelengths when analyzing the samples indicated a esonant process. FTIR analysis revealed an increase in the peaks attributed to C=N bonds as well as indicated a tiny amount of C=N bonds within the nitrogen-doped films. Additionally, surface morphology analysis showed a greater particle density on films prepared at the highest laser energy in comparison to those prepared at lower fluences. Film hardness characterized by nanoindentation revealed that films became softer as a function of nitrogen content. (C) 2005 American Institute of Physics.

U2 - 10.1063/1.874300

DO - 10.1063/1.874300

M3 - Article

VL - 97

SP - 73522

EP - 73521

JO - Journal of Applied Physics

T2 - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 7

ER -