Skeletal Muscle Stem Cells

Elisa Negroni, Maximilien Bencze, Stephanie Duguez, Gillian Butler-Browne, Vincent Mouly

    Research output: Chapter in Book/Report/Conference proceedingChapter

    Abstract

    Stem cell therapy has been envisaged for treating disorders affecting skeletal muscle tissue. The first myogenic stem cell which was proposed and used in clinical trials was the physiological muscle progenitor, i.e. the satellite cell.However, before considering intervention in skeletal muscle, one needs to know well the process of muscle regeneration, as well as the different pathologies that can be eligible for cell therapy. Here, we present an overview of muscle regeneration, the role of satellite cells, how the process is orchestrated,and a short overview on some muscular dystrophies.
    LanguageEnglish
    Title of host publicationStem Cell Biology and Regenerative Medicine
    Pages415-429
    Publication statusPublished - 15 Oct 2014

    Fingerprint

    Muscle Cells
    Skeletal Muscle
    Stem Cells
    Muscles
    Cell- and Tissue-Based Therapy
    Regeneration
    Muscular Dystrophies
    Clinical Trials
    Pathology

    Keywords

    • muscle stem cells and regeneration

    Cite this

    Negroni, E., Bencze, M., Duguez, S., Butler-Browne, G., & Mouly, V. (2014). Skeletal Muscle Stem Cells. In Stem Cell Biology and Regenerative Medicine (pp. 415-429)
    Negroni, Elisa ; Bencze, Maximilien ; Duguez, Stephanie ; Butler-Browne, Gillian ; Mouly, Vincent. / Skeletal Muscle Stem Cells. Stem Cell Biology and Regenerative Medicine. 2014. pp. 415-429
    @inbook{a87b8dbe8cd0480fa51185406ac74e11,
    title = "Skeletal Muscle Stem Cells",
    abstract = "Stem cell therapy has been envisaged for treating disorders affecting skeletal muscle tissue. The first myogenic stem cell which was proposed and used in clinical trials was the physiological muscle progenitor, i.e. the satellite cell.However, before considering intervention in skeletal muscle, one needs to know well the process of muscle regeneration, as well as the different pathologies that can be eligible for cell therapy. Here, we present an overview of muscle regeneration, the role of satellite cells, how the process is orchestrated,and a short overview on some muscular dystrophies.",
    keywords = "muscle stem cells and regeneration",
    author = "Elisa Negroni and Maximilien Bencze and Stephanie Duguez and Gillian Butler-Browne and Vincent Mouly",
    note = "Reference text: [1] Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R.K. Gherardi, and B. Chazaud, (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med, 204 1057–1069. [2] Asakura, A., M. Komaki, and M. Rudnicki, (2001). Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 68 245–253. [3] Bencze M, Negroni E, Vallese D, Yacoub–Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, Savino W, Mouly V and Riederer I (2012). Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation. Mol Ther. 20(11):2168–2179. [4] Bocklandt, S., Lin, W., Sehl, M. E., S{\'a}nchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PloS one, 6(6), e14821. [5] Brack,A. S., Bildsoe, H.,&Hughes, S. M. (2005). Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. Journal of cell science, 118 (Pt 20), 4813–21. [6] Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317 (5839), 807–810. [7] Chakkalakal, J. V, Jones, K. M., Basson, M. A., & Brack, A. S. (2012). The aged niche disrupts muscle stem cell quiescence. Nature, 490 (7420), 355–60. [8] Charge, S. B. and M. A. Rudnicki, (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev, 84 209–238. [9] Christov, C., F. Chretien, R. Abou-Khalil, G. Bassez, G. Vallet, F. J. Authier, Y. Bassaglia, V. Shinin, S. Tajbakhsh, B. Chazaud, and R. K. Gherardi, (2007). Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell, 18 1397–1409. [10] Collas, P. (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics?: official journal of the DNA Methylation Society, 5(6), 476–482. [11] Collins, C. A., Zammit, P. S., Ruiz, A. P., Morgan, J. E., & Partridge, T. A. (2007).Apopulation of myogenic stem cells that survives skeletal muscle aging. Stem cells, 25(4), 885–894. [12] Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760–764. [13] Cooper, R. N., S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham, and G. S. Butler-Browne, (1999). In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci, 112 ( Pt 17) 2895–2901. [14] Cornelison, D. D., B. B. Olwin, M. A. Rudnicki, and B. J. Wold, (2000). MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol, 224 122–137. 426 Skeletal Muscle Stem Cells [15] Decary, S., V. Mouly, C. B. Hamida, A. Sautet, J. P. Barbet, and G. S. Butler-Browne, (1997). Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther, 8 1429–1438. [16] Decary S., Ben Hamida C, Mouly V, Hentati F, BarbetJP, Butler- Browne GS, (2000). Shorter telomeres in dystrophic muscle: evidence for extensive regeneration in young infants. Neurom. Dis. 10: 113–120 [17] Duguez S, Duddy W, Johnston H, Lain{\'e} J, Le Bihan MC, Brown KJ, Bigot A, Hathout Y, Butler-Browne G, Partridge T (2013). Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cell Mol Life Sci. 70(12):2159–2174. [18] Edom-Vovard, F., V. Mouly, J. P. Barbet, and G. S. Butler-Browne, (1999). The four populations of myoblasts involved in human limb muscle formation are present from the onset of primary myotube formation. J Cell Sci, 112 ( Pt 2) 191–199. [19] Fuchtbauer, E. M. and H. Westphal, (1992). MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn, 193 34–39. [20] Hasty, P., A. Bradley, J. H. Morris, D. G. Edmondson, J. M.Venuti, E. N. Olson, and W. H. Klein, (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364 501–506. [21] Hawke,T. J. and D. J. Garry, (2001). Myogenic satellite cells: physiology to molecular biology. J Appl Physiol, 91 534–551. [22] Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome biology, 14(10), R115. Klein, C. S., Marsh, G. D., Petrella, R. J., & Rice, C. L. (2003). Muscle fiber number in the biceps brachii muscle of young and old men. Muscle & nerve, 28(1), 62–68. [23] Krishnakumar, R., & Blelloch, R. H. (2013). Epigenetics of cellular reprogramming. Current opinion in genetics & development, 23(5), 548–555. [24] Kuang, S. and M.A. Rudnicki, (2008). The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med, 14 82–91. [25] Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lain{\'e} J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G, (2012). In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics. pii: S1874–3919(12)00652–5. doi: 10.1016/j [26] Manzur, A. Y., T. Kuntzer, M. Pike, and A. Swan, (2008). Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev, CD003725.Mauro, A., (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol, 9 493–495. [27] Megeney, L. A., B. Kablar, K. Garrett, J. E. Anderson, and M. A. Rudnicki, (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev, 10 1173–1183. [28] Nabeshima, Y., K. Hanaoka, M. Hayasaka, E. Esumi, S. Li, I. Nonaka, and Y. Nabeshima, (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 364 532–535. [29] Negroni E, DVallese, Vilquin JT, Butler-Browne GS, Mouly V, Trollet C, (2011). Current advances in cell therapy strategies for muscular dystrophies. Expert Opin. Biol. Ther. 11(2):157–176. [30] Nilwik, R., Snijders, T., Leenders, M., Groen, B. B. L., van Kranenburg, J., Verdijk, L. B., & van Loon, L. J. C. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology, 48(5), 492–8. [31] Peault, B., M. Rudnicki, Y. Torrente, G. Cossu, J. P. Tremblay, T. Partridge, E. Gussoni, L. M. Kunkel, and J. Huard, (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther, 15 867–877. [32] Perie, S., K. Mamchaoui,V. Mouly, S. Blot, B. Bouazza, L. E. Thornell, J. L. St Guily, andG. Butler-Browne, (2006). Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation. Neuromuscul Disord, 16 770–781. [33] P{\'e}ri{\'e} S, Trollet C, Mouly V, Vanneaux V, Mamchaoui K, Bouazza B, Pierre Marolleau J, Lafor{\^e}t P, Chapon F, Eymard B, Butler-Browne G, Larghero J, St Guily JL, (2013). Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a Phase I/IIa clinical study. Mol Ther. doi: 10.1038/mt.2013.155. [Epub ahead of print]. [34] Pollina, E. A., & Brunet, A. (2011). Epigenetic regulation of aging stem cells. Oncogene, 30(28), 3105–26.Rhodes, S. J. and S. F. Konieczny, (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev, 3 2050–2061. 428 Skeletal Muscle Stem Cells [35] Riederer I, Negroni E, Bencze M,WolffA, Aamiri A, Di Santo JP, Silva- Barbosa SD, Butler-Browne G, Savino W, Mouly V, (2012). Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice CorrelatesWith Increased Proliferation and Migration. Mol Ther. 20(1):146–154. [36] Rudnicki, M. A., F. Le Grand, I. McKinnell, and S. Kuang, (2008). The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol, 73 323–331. [37] Schultz, E., Gibson M. C., and T. Champion, (1978). Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool, 206 451–456. [38] Schultz, E., D. L. Jaryszak, and C. R. Valliere, (1985). Response of satellite cells to focal skeletal muscle injury. Muscle Nerve, 8 217–222. [39] Serrano, A. L. and P. Munoz-Canoves, (2010). Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res, 316 3050–8. [40] Shinin, V., B. Gayraud-Morel, D. Gomes, and S. Tajbakhsh, (2006). Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol, 8 677–687. [41] Smythe, G. M. and M. D. Grounds, (2001). Absence of MyoD increases donor myoblast migration into host muscle. Exp Cell Res, 267 267–274. [42] Spalding, K. L., R. D. Bhardwaj, B. A. Buchholz, H. Druid and J. Fris{\'e}n, (2006). Retrospective birth dating of cells in humans. Cell, 122 133–143. [43] Villalta, S. A., B. Deng, C. Rinaldi, M. Wehling-Henricks, and J. G. Tidball, (2011). IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressingM2macrophage activation and inhibiting muscle cell proliferation. J Immunol, 187 5419–28. [44] Wright,W. E., D. A. Sassoon, and V. K. Lin, (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 56 607–617. [45] Zammit, P. S., T. A. Partridge, and Z. Yablonka-Reuveni, (2006). The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem, 54 1177–1191.",
    year = "2014",
    month = "10",
    day = "15",
    language = "English",
    isbn = "978-1-4614-5492-2",
    pages = "415--429",
    booktitle = "Stem Cell Biology and Regenerative Medicine",

    }

    Negroni, E, Bencze, M, Duguez, S, Butler-Browne, G & Mouly, V 2014, Skeletal Muscle Stem Cells. in Stem Cell Biology and Regenerative Medicine. pp. 415-429.

    Skeletal Muscle Stem Cells. / Negroni, Elisa; Bencze, Maximilien; Duguez, Stephanie; Butler-Browne, Gillian; Mouly, Vincent.

    Stem Cell Biology and Regenerative Medicine. 2014. p. 415-429.

    Research output: Chapter in Book/Report/Conference proceedingChapter

    TY - CHAP

    T1 - Skeletal Muscle Stem Cells

    AU - Negroni, Elisa

    AU - Bencze, Maximilien

    AU - Duguez, Stephanie

    AU - Butler-Browne, Gillian

    AU - Mouly, Vincent

    N1 - Reference text: [1] Arnold, L., A. Henry, F. Poron, Y. Baba-Amer, N. van Rooijen, A. Plonquet, R.K. Gherardi, and B. Chazaud, (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med, 204 1057–1069. [2] Asakura, A., M. Komaki, and M. Rudnicki, (2001). Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation, 68 245–253. [3] Bencze M, Negroni E, Vallese D, Yacoub–Youssef H, Chaouch S, Wolff A, Aamiri A, Di Santo JP, Chazaud B, Butler-Browne G, Savino W, Mouly V and Riederer I (2012). Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation. Mol Ther. 20(11):2168–2179. [4] Bocklandt, S., Lin, W., Sehl, M. E., Sánchez, F. J., Sinsheimer, J. S., Horvath, S., & Vilain, E. (2011). Epigenetic predictor of age. PloS one, 6(6), e14821. [5] Brack,A. S., Bildsoe, H.,&Hughes, S. M. (2005). Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. Journal of cell science, 118 (Pt 20), 4813–21. [6] Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 317 (5839), 807–810. [7] Chakkalakal, J. V, Jones, K. M., Basson, M. A., & Brack, A. S. (2012). The aged niche disrupts muscle stem cell quiescence. Nature, 490 (7420), 355–60. [8] Charge, S. B. and M. A. Rudnicki, (2004). Cellular and molecular regulation of muscle regeneration. Physiol Rev, 84 209–238. [9] Christov, C., F. Chretien, R. Abou-Khalil, G. Bassez, G. Vallet, F. J. Authier, Y. Bassaglia, V. Shinin, S. Tajbakhsh, B. Chazaud, and R. K. Gherardi, (2007). Muscle satellite cells and endothelial cells: close neighbors and privileged partners. Mol Biol Cell, 18 1397–1409. [10] Collas, P. (2010). Programming differentiation potential in mesenchymal stem cells. Epigenetics?: official journal of the DNA Methylation Society, 5(6), 476–482. [11] Collins, C. A., Zammit, P. S., Ruiz, A. P., Morgan, J. E., & Partridge, T. A. (2007).Apopulation of myogenic stem cells that survives skeletal muscle aging. Stem cells, 25(4), 885–894. [12] Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., & Rando, T. A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature, 433(7027), 760–764. [13] Cooper, R. N., S. Tajbakhsh, V. Mouly, G. Cossu, M. Buckingham, and G. S. Butler-Browne, (1999). In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci, 112 ( Pt 17) 2895–2901. [14] Cornelison, D. D., B. B. Olwin, M. A. Rudnicki, and B. J. Wold, (2000). MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. Dev Biol, 224 122–137. 426 Skeletal Muscle Stem Cells [15] Decary, S., V. Mouly, C. B. Hamida, A. Sautet, J. P. Barbet, and G. S. Butler-Browne, (1997). Replicative potential and telomere length in human skeletal muscle: implications for satellite cell-mediated gene therapy. Hum Gene Ther, 8 1429–1438. [16] Decary S., Ben Hamida C, Mouly V, Hentati F, BarbetJP, Butler- Browne GS, (2000). Shorter telomeres in dystrophic muscle: evidence for extensive regeneration in young infants. Neurom. Dis. 10: 113–120 [17] Duguez S, Duddy W, Johnston H, Lainé J, Le Bihan MC, Brown KJ, Bigot A, Hathout Y, Butler-Browne G, Partridge T (2013). Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cell Mol Life Sci. 70(12):2159–2174. [18] Edom-Vovard, F., V. Mouly, J. P. Barbet, and G. S. Butler-Browne, (1999). The four populations of myoblasts involved in human limb muscle formation are present from the onset of primary myotube formation. J Cell Sci, 112 ( Pt 2) 191–199. [19] Fuchtbauer, E. M. and H. Westphal, (1992). MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn, 193 34–39. [20] Hasty, P., A. Bradley, J. H. Morris, D. G. Edmondson, J. M.Venuti, E. N. Olson, and W. H. Klein, (1993). Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 364 501–506. [21] Hawke,T. J. and D. J. Garry, (2001). Myogenic satellite cells: physiology to molecular biology. J Appl Physiol, 91 534–551. [22] Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome biology, 14(10), R115. Klein, C. S., Marsh, G. D., Petrella, R. J., & Rice, C. L. (2003). Muscle fiber number in the biceps brachii muscle of young and old men. Muscle & nerve, 28(1), 62–68. [23] Krishnakumar, R., & Blelloch, R. H. (2013). Epigenetics of cellular reprogramming. Current opinion in genetics & development, 23(5), 548–555. [24] Kuang, S. and M.A. Rudnicki, (2008). The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med, 14 82–91. [25] Le Bihan MC, Bigot A, Jensen SS, Dennis J, Rogowska-Wrzesinska A, Lainé J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G, (2012). In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics. pii: S1874–3919(12)00652–5. doi: 10.1016/j [26] Manzur, A. Y., T. Kuntzer, M. Pike, and A. Swan, (2008). Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Database Syst Rev, CD003725.Mauro, A., (1961). Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol, 9 493–495. [27] Megeney, L. A., B. Kablar, K. Garrett, J. E. Anderson, and M. A. Rudnicki, (1996). MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev, 10 1173–1183. [28] Nabeshima, Y., K. Hanaoka, M. Hayasaka, E. Esumi, S. Li, I. Nonaka, and Y. Nabeshima, (1993). Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 364 532–535. [29] Negroni E, DVallese, Vilquin JT, Butler-Browne GS, Mouly V, Trollet C, (2011). Current advances in cell therapy strategies for muscular dystrophies. Expert Opin. Biol. Ther. 11(2):157–176. [30] Nilwik, R., Snijders, T., Leenders, M., Groen, B. B. L., van Kranenburg, J., Verdijk, L. B., & van Loon, L. J. C. (2013). The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental gerontology, 48(5), 492–8. [31] Peault, B., M. Rudnicki, Y. Torrente, G. Cossu, J. P. Tremblay, T. Partridge, E. Gussoni, L. M. Kunkel, and J. Huard, (2007). Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther, 15 867–877. [32] Perie, S., K. Mamchaoui,V. Mouly, S. Blot, B. Bouazza, L. E. Thornell, J. L. St Guily, andG. Butler-Browne, (2006). Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation. Neuromuscul Disord, 16 770–781. [33] Périé S, Trollet C, Mouly V, Vanneaux V, Mamchaoui K, Bouazza B, Pierre Marolleau J, Laforêt P, Chapon F, Eymard B, Butler-Browne G, Larghero J, St Guily JL, (2013). Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a Phase I/IIa clinical study. Mol Ther. doi: 10.1038/mt.2013.155. [Epub ahead of print]. [34] Pollina, E. A., & Brunet, A. (2011). Epigenetic regulation of aging stem cells. Oncogene, 30(28), 3105–26.Rhodes, S. J. and S. F. Konieczny, (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes Dev, 3 2050–2061. 428 Skeletal Muscle Stem Cells [35] Riederer I, Negroni E, Bencze M,WolffA, Aamiri A, Di Santo JP, Silva- Barbosa SD, Butler-Browne G, Savino W, Mouly V, (2012). Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice CorrelatesWith Increased Proliferation and Migration. Mol Ther. 20(1):146–154. [36] Rudnicki, M. A., F. Le Grand, I. McKinnell, and S. Kuang, (2008). The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol, 73 323–331. [37] Schultz, E., Gibson M. C., and T. Champion, (1978). Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool, 206 451–456. [38] Schultz, E., D. L. Jaryszak, and C. R. Valliere, (1985). Response of satellite cells to focal skeletal muscle injury. Muscle Nerve, 8 217–222. [39] Serrano, A. L. and P. Munoz-Canoves, (2010). Regulation and dysregulation of fibrosis in skeletal muscle. Exp Cell Res, 316 3050–8. [40] Shinin, V., B. Gayraud-Morel, D. Gomes, and S. Tajbakhsh, (2006). Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol, 8 677–687. [41] Smythe, G. M. and M. D. Grounds, (2001). Absence of MyoD increases donor myoblast migration into host muscle. Exp Cell Res, 267 267–274. [42] Spalding, K. L., R. D. Bhardwaj, B. A. Buchholz, H. Druid and J. Frisén, (2006). Retrospective birth dating of cells in humans. Cell, 122 133–143. [43] Villalta, S. A., B. Deng, C. Rinaldi, M. Wehling-Henricks, and J. G. Tidball, (2011). IFN-gamma promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressingM2macrophage activation and inhibiting muscle cell proliferation. J Immunol, 187 5419–28. [44] Wright,W. E., D. A. Sassoon, and V. K. Lin, (1989). Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell, 56 607–617. [45] Zammit, P. S., T. A. Partridge, and Z. Yablonka-Reuveni, (2006). The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem, 54 1177–1191.

    PY - 2014/10/15

    Y1 - 2014/10/15

    N2 - Stem cell therapy has been envisaged for treating disorders affecting skeletal muscle tissue. The first myogenic stem cell which was proposed and used in clinical trials was the physiological muscle progenitor, i.e. the satellite cell.However, before considering intervention in skeletal muscle, one needs to know well the process of muscle regeneration, as well as the different pathologies that can be eligible for cell therapy. Here, we present an overview of muscle regeneration, the role of satellite cells, how the process is orchestrated,and a short overview on some muscular dystrophies.

    AB - Stem cell therapy has been envisaged for treating disorders affecting skeletal muscle tissue. The first myogenic stem cell which was proposed and used in clinical trials was the physiological muscle progenitor, i.e. the satellite cell.However, before considering intervention in skeletal muscle, one needs to know well the process of muscle regeneration, as well as the different pathologies that can be eligible for cell therapy. Here, we present an overview of muscle regeneration, the role of satellite cells, how the process is orchestrated,and a short overview on some muscular dystrophies.

    KW - muscle stem cells and regeneration

    M3 - Chapter

    SN - 978-1-4614-5492-2

    SP - 415

    EP - 429

    BT - Stem Cell Biology and Regenerative Medicine

    ER -

    Negroni E, Bencze M, Duguez S, Butler-Browne G, Mouly V. Skeletal Muscle Stem Cells. In Stem Cell Biology and Regenerative Medicine. 2014. p. 415-429