Sickle cell disease classification using deep learning

Sanjeda Sara Jennifer, Mahbub Hasan Shamim, Ahmed Wasif Reza, Nazmul Siddique

Research output: Contribution to journalArticlepeer-review

22 Downloads (Pure)

Abstract

This paper presents a transfer and deep learning based approach to the classification of Sickle Cell Disease (SCD). Five transfer learning models such as ResNet-50, AlexNet, MobileNet, VGG-16 and VGG-19, and a sequential convolutional neural network (CNN) have been implemented for SCD classification. ErythrocytesIDB dataset has been used for training and testing the models. In order to make up for the data insufficiency of the erythrocytesIDB dataset, advanced image augmentation techniques are employed to ensure the robustness of the dataset, enhance dataset diversity and improve the accuracy of the models. An ablation experiment using Random Forest and Support Vector Machine (SVM) classifiers along with various hyperparameter tweaking was carried out to determine the contribution of different model elements on their predicted accuracy. A rigorous statistical analysis was carried out for evaluation and to further evaluate the model's robustness, an adversarial attack test was conducted. The experimental results demonstrate compelling performance across all models. After performing the statistical tests, it was observed that MobileNet showed a significant improvement (p = 0.0229), while other models (ResNet-50, AlexNet, VGG-16, VGG-19) did not (p > 0.05). Notably, the ResNet-50 model achieves remarkable precision, recall, and F1-score values of 100 % for circular, elongated, and other cell shapes when experimented with a smaller dataset. The AlexNet model achieves a balanced precision (98 %) and recall (99 %) for circular and elongated shapes. Meanwhile, the other models showcase competitive performance. [Abstract copyright: © 2023 The Authors. Published by Elsevier Ltd.]
Original languageEnglish
Article numbere22203
Pages (from-to)1-2
Number of pages20
JournalHeliyon
Volume9
Issue number11
Early online date12 Nov 2023
DOIs
Publication statusPublished online - 12 Nov 2023

Bibliographical note

Funding Information:
The dataset is collected from the UGiVIA research group, University of the Balearic Islands, Palma, Spain.

Publisher Copyright:
© 2023

Keywords

  • Ablation experiment
  • Deep learning model
  • Machine learning classifier
  • Classification
  • Sickle cell disease

Fingerprint

Dive into the research topics of 'Sickle cell disease classification using deep learning'. Together they form a unique fingerprint.

Cite this