Abstract
Phosphonates have emerged as an alternative for functionalization of titanium surfaces by theformation of homogeneous self-assembled monolayers (SAMs) via Ti-O-P linkages. This study presents results from an investigation of the modification of Ti6Al4V alloy by chemisorption of osseoinductive alendronate using a simple, effective and clean methodology. The modified surfaces showed a tailored topography and surface chemistry as determined by SEM microscopy and RAMAN spectroscopy. X-ray photoelectron spectroscopy revealed that an effective mode of bonding is created between the metal oxide surface and the phosphate residue of alendronate, leading to formation of homogenous drug distribution along the surface. In-vitro studies showed that alendronate SAMs induce differentiation of hMSC to a bone cell phenotype and promote bone formation on modified surfaces. Here we show that this novel method for the preparation of functional coatings on titanium-based medical devices provides osseoinductive bioactive molecules to promote enhanced integration at the site of implantation.
Original language | English |
---|---|
Article number | 30548 |
Number of pages | 10 |
Journal | Scientific Reports |
Volume | 6 |
Issue number | 30548 |
DOIs | |
Publication status | Published (in print/issue) - 29 Jul 2016 |
Keywords
- Phosphonates
- titanium surfaces
- self-assembled monolayers (SAMs)
- alendronate
- hMSC
- bone formation.