Seizure Classification of EEG based on Wavelet Signal Denoising Using a Novel Channel Selection Algorithm

Niamh McCallan, Scot Davidson, Kok Yew Ng, Pardis Biglarbeigi, Dewar Finlay, Boon Leong Lan, James McLaughlin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

33 Downloads (Pure)

Abstract

Epilepsy is a disorder of the nervous system that can affect people of any age group. With roughly 50 million people worldwide diagnosed with the disorder, it is one of the most common neurological disorders. The EEG is an indispensable tool for diagnosis of epileptic seizures in an ideal case, as brain waves from an epileptic person will present distinct abnormalities. However, in real world situations there will often be biological and electrical noise interference, as well as the issue of a multichannel signal, which introduce a great challenge for seizure detection. For this study, the Temple University Hospital (TUH) EEG Seizure Corpus dataset was used. This paper proposes a novel channel selection method which isolates different frequency ranges within five channels. This is based upon the frequencies at which normal brain waveforms exhibit. A one second window was selected, with a 0.5 second overlap. Wavelet signal denoising was performed using Daubechies 4 wavelet decomposition, thresholding was applied using minimax soft thresholding criteria. Filter banking was used to localise frequency ranges from five specific channels. Statistical features were then derived from the outputs. After performing bagged tree classification using 500 learners, a test accuracy of 0.82 was achieved.
Original languageEnglish
Title of host publication2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
PublisherIEEE
Number of pages7
ISBN (Electronic)9789881476890
ISBN (Print)9781665441629
Publication statusPublished (in print/issue) - 3 Feb 2022
Event13th Asia Pacific Signal and Information Processing Association Annual Summit and Conference - KFC Hall & Rooms Kokusai Fashion Centre Bldg., Yokoami 1-6-1, Sumida City, Tokyo, Tokyo, Japan
Duration: 14 Dec 202117 Dec 2021
https://www.apsipa2021.org/

Conference

Conference13th Asia Pacific Signal and Information Processing Association Annual Summit and Conference
Abbreviated titleAPSIPA ASC
Country/TerritoryJapan
CityTokyo
Period14/12/2117/12/21
Internet address

Keywords

  • Seizure classification
  • EEG signal processing
  • Channel selection
  • Wavelet denoised

Fingerprint

Dive into the research topics of 'Seizure Classification of EEG based on Wavelet Signal Denoising Using a Novel Channel Selection Algorithm'. Together they form a unique fingerprint.

Cite this