TY - ADVS
T1 - Robot Control Code Generation by Task Demonstration in a Dynamic Environment
AU - Gardiner, Bryan
AU - Coleman, SA
AU - McGinnity, TM
AU - He, H
PY - 2012/8/23
Y1 - 2012/8/23
N2 - Generally within mobile robotics, the most dominant relationship to consider when implementing robot control code is the one between the robot’s sensors and its motors. When implementing such a relationship, efficiency and reliability are of crucial importance. The latter aspects often prove challenging due to the complex interaction between a robot and the environment in which it exists, frequently resulting in a time consuming iterative process where control code is redeveloped and tested many times before obtaining an optimal controller. In this paper, we address this challenge by implementing an alternative approach to control code generation, which first identifies the desired robot behaviour and represents the sensor-motor task algorithmically through system identification using the NARMAX modelling methodology. The control code is generated by task demonstration, where the sensory perception and velocities are logged and the relationship that exists between them is then modelled using system identification. This approach produces transparent control code through non-linear polynomial equations that can be mathematically analysed to obtain formal statements regarding specific inputs/outputs. We demonstrate this approach to control code generation and analyse its performance in dynamic environments.
AB - Generally within mobile robotics, the most dominant relationship to consider when implementing robot control code is the one between the robot’s sensors and its motors. When implementing such a relationship, efficiency and reliability are of crucial importance. The latter aspects often prove challenging due to the complex interaction between a robot and the environment in which it exists, frequently resulting in a time consuming iterative process where control code is redeveloped and tested many times before obtaining an optimal controller. In this paper, we address this challenge by implementing an alternative approach to control code generation, which first identifies the desired robot behaviour and represents the sensor-motor task algorithmically through system identification using the NARMAX modelling methodology. The control code is generated by task demonstration, where the sensory perception and velocities are logged and the relationship that exists between them is then modelled using system identification. This approach produces transparent control code through non-linear polynomial equations that can be mathematically analysed to obtain formal statements regarding specific inputs/outputs. We demonstrate this approach to control code generation and analyse its performance in dynamic environments.
U2 - 10.1016/j.robot.2012.07.023
DO - 10.1016/j.robot.2012.07.023
M3 - Web publication/site
PB - Elsevier
ER -