Rhamnolipids from Pseudomonas aeruginosa strain W10;as antibiofilm/antibiofouling products for metal protection

Alif Chebbi, Mohamed Elshikh, Farazul Haque, Syed Ahmed, Sara Dobbin, R Marchant, Sami Sayadi, Mohamed Chamkha, Ibrahim M Banat

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)


Industrial biofouling-problems associated with the accumulation of microorganisms from flowing water and fluids on processing surfaces can cause severe problems. A Pseudomonas aeruginosa strain W10 was isolated from industrial setting and found to produce predominantly di-rhamnolipids (Rha-Rha-C10-C10) with a yield of around 10 g L−1 and a critical micelle concentration (CMC) of 80 mg L−1. P. aeruginosa W10 rhamnolipids were able to disrupt up to 99% of 48 h pre-formed biofilms of the Gram-positive organisms Bacillus licheniformis CAN55, Staphylococcus capitis SH6, and a mixed culture (strains CAN55, SH6, and W10), under static conditions, at concentrations of 0.1, 0.5, and 1 mg ml−1 on a stainless steel surface commonly used in industrial process pipelines. CFU measurements and LIVE/DEAD BacLight staining confirmed these observations. Furthermore, a purified di-rhamnolipid fraction was found to be responsible for the microbial inhibition of B. licheniformis strain CAN55. This study providesevidence that rhamnolipids may have valuable applications in preventing biofilms and biofouling in industrial plants and, in a wider context, may also apply to metal medical devices.
Original languageEnglish
Pages (from-to)1-12
Early online date3 Feb 2017
Publication statusPublished (in print/issue) - 2 May 2017


  • biofilm inhibition
  • biofouling
  • biosurfactants
  • rhamnolipids
  • metal surface


Dive into the research topics of 'Rhamnolipids from Pseudomonas aeruginosa strain W10;as antibiofilm/antibiofouling products for metal protection'. Together they form a unique fingerprint.

Cite this