TY - JOUR
T1 - Quality by design micro-engineering optimisation of NSAID-loaded electrospun fibrous patches
AU - Nazari, Kazem
AU - Mehta, Prina
AU - Arshad, Muhammad Sohail
AU - Ahmed, Shahabuddin
AU - Andriotis, Eleftherios G.
AU - Singh, Neenu
AU - Qutachi, Omar
AU - Chang, Ming Wei
AU - Fatouros, Dimitrios G.
AU - Ahmad, Zeeshan
PY - 2019/12/18
Y1 - 2019/12/18
N2 - The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres.
AB - The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres.
KW - Electrospinning
KW - Fibres
KW - NSAID
KW - Oromucosal delivery
KW - Quality by design
UR - http://www.scopus.com/inward/record.url?scp=85077213980&partnerID=8YFLogxK
U2 - 10.3390/pharmaceutics12010002
DO - 10.3390/pharmaceutics12010002
M3 - Article
C2 - 31861296
AN - SCOPUS:85077213980
SN - 1999-4923
VL - 12
JO - Pharmaceutics
JF - Pharmaceutics
IS - 1
M1 - 2
ER -