Proactive business process mining for end-state prediction using trace features

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Business processes in the complex real-world environment are heterogeneous and challenging to monitor for any possible discrepancies. Businesses substantially rely on the efficiency of these processes to maintain the quality of services for their customers and wish to ensure that an executing business process is progressing in the desired manner. Although process mining techniques provide adequate information about the process execution, it is vital to maintain the quality of business processes through an automated process prediction system that analyses and provides constructive feedback for process improvement. Techniques in the literature can predict the future outcome of a business process, but they lack empirical information about the behaviour of an executing process instance as compared to the optimum process model. In this paper, we have proposed an online process prediction framework using features generated through process mining techniques. We used a heuristic miner algorithm to discover the process model and performed conformance analysis to generate features presenting the contextual behaviour of the process instance. We selected highly contributing features to predict the outcome of the real-world business process using several machine learning algorithms. Our experimental results showed high accuracy, recall, and F-measure. We compared our technique with a similar technique from literature and showed that our solution is more reliable in process outcome prediction.
Original languageEnglish
Title of host publicationThe 7th IEEE Smart World Congress (SmartWorld 2021)
PublisherPubl by IEEE
Pages1-6
Number of pages6
Publication statusE-pub ahead of print - 21 Sep 2021
Event2021 IEEE SmartWorld, Ubiquitous Intelligence &Computing, Advanced &Trusted Computing, Scalable Computing &Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI) - Online-virtual, Atlanta, United States
Duration: 18 Sep 202222 Sep 2022
https://sites.google.com/view/workshopspa/home

Conference

Conference2021 IEEE SmartWorld, Ubiquitous Intelligence &Computing, Advanced &Trusted Computing, Scalable Computing &Communications, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI)
CountryUnited States
CityAtlanta
Period18/09/2222/09/22
Internet address

Keywords

  • process mining
  • Process Prediction
  • Feature Engineering
  • Conformance Analysis
  • Business processes

Fingerprint

Dive into the research topics of 'Proactive business process mining for end-state prediction using trace features'. Together they form a unique fingerprint.

Cite this