Abstract
In engineering applications, we often face highly imbalanced data problems where majority of the data are from a condition and small minority are from others. Directly learning classifier on such problems would be prone to a biased classification performance by the majority class, so resulting in poor predication on the minority class. This paper proposes a method for balancing training data, which over-samples the minority class. The method uses between-class and within-class information to decide the vicinity space of an example. It generates synthetic examples along orthogonal directions in the vicinity, so it ensures the generated synthetic examples well represent the entire vicinity space and be more similar to minority class than majority class. The method is easy to use, as it involves no parameter setting. A real world problem of semiconductor manufacturing line monitoring and process control data is used to demonstrate that classification performance can be significantly improved through learning on balanced data by the proposed method.
Original language | English |
---|---|
Title of host publication | Unknown Host Publication |
Publisher | British Institute of Non-Destructive Testing |
Number of pages | 8 |
ISBN (Print) | 978-1-901892-33-8 |
Publication status | Published (in print/issue) - 22 Jun 2010 |
Event | The 7th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies - Stratford-upon-Avon Duration: 22 Jun 2010 → … |
Conference
Conference | The 7th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies |
---|---|
Period | 22/06/10 → … |