Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting ( Micromesistius poutassou ) Protein Hydrolysates

Pádraigín A Harnedy-Rothwell, Neda Khatib, Shaun Sharkey, Ryan A Lafferty, Snehal Gite, Jason Whooley, Finbarr PM O’Harte, Richard J FitzGerald

Research output: Contribution to journalArticlepeer-review

Abstract

Protein hydrolysates from low-value underutilised fish species are potential sources of high-quality dietary protein and health enhancing peptides. Six blue whiting soluble protein hydrolysates (BW-SPH-A_F), generated at industrial scale using different hydrolysis conditions, were assessed in terms of their protein equivalent content, amino acid profile and score and physicochemical properties in addition to their ability to inhibit dipeptidyl peptidase IV (DPP-IV) and stimulate the secretion of insulin from BRIN-BD11 cells. Furthermore, the effect of simulated gastrointestinal digestion (SGID) on the stability of the BW-SPHs and their associated in vitro antidiabetic activity was investigated. The BW-SPHs contained between 70–74% (w/w) protein and all essential and non-essential amino acids. All BW-SPHs mediated DPP-IV inhibitory (IC50: 2.12–2.90 mg protein/mL) and insulin secretory activity (2.5 mg/mL; 4.7 to 6.4-fold increase compared to the basal control (5.6 mM glucose alone)). All BW-SPHs were further hydrolysed during SGID. While the in vitro DPP-IV inhibitory and insulin secretory activity mediated by some BW-SPHs was reduced following SGID, the activity remained high. In general, the insulin secretory activity of the BW-SPHs were 4.5–5.4-fold higher than the basal control following SGID. The BW-SPHs generated herein provide potential for anti-diabetic related functional ingredients, whilst also enhancing environmental and commercial sustainability.
Original languageEnglish
Article numbere383
JournalMarine drugs
Volume19
Issue number7
Early online date2 Jul 2021
DOIs
Publication statusE-pub ahead of print - 2 Jul 2021

Keywords

  • blue whiting
  • protein hydrolysate
  • antidiabetic
  • type 2 diabetes mellitus
  • insulinotropic
  • functional food
  • amino acid analysis

Fingerprint

Dive into the research topics of 'Physicochemical, Nutritional and In Vitro Antidiabetic Characterisation of Blue Whiting ( Micromesistius poutassou ) Protein Hydrolysates'. Together they form a unique fingerprint.

Cite this