Abstract
Background
There is a lack of understanding of the factors that influence independent mobility and participation in meaningful activities. The purpose of this study was to analyse physical factors influencing independent use of manual and power wheelchairs in a total population of children with cerebral palsy (CP).
Methods
A cross-sectional study based on the most recent examination of all children with CP, born 2002–2013, reported into the Swedish cerebral palsy registry (CPUP), from January 2012 to June 2014. There were 2328 children (58 % boys, 42 % girls), aged 0–11 years, at all levels of gross motor function and hand function. Hazard ratios adjusted for age and sex were used to calculate the risk for not being able to self-propel based on Gross Motor Function Classification System (GMFCS) levels, upper extremity range of motion and hand function including Manual Ability Classification System (MACS), House functional classification system, Thumb-in-palm deformity, Zancolli (spasticity of wrist/finger flexors) and bimanual ability.
Results
In total 858 children used wheelchairs outdoors (692 manual, 20 power, 146 both). Only 10 % of the 838 children self-propelled manual wheelchairs, while 90 % were pushed. In contrast 75 % of the 166 children who used power mobility outdoors were independent. Poor hand function was the greatest risk factor for being unable to self-propel a manual wheelchair, while classification as GMFCS V or MACS IV-V were the greatest risk factors for not being able to use a power wheelchair independently.
Conclusions
The majority of children with CP, aged 0–11 years did not self-propel manual wheelchairs regardless of age, gross motor function, range of motion or manual abilities. Power mobility should be considered at earlier ages to promote independent mobility for all children with CP who require a wheelchair especially outdoors.
There is a lack of understanding of the factors that influence independent mobility and participation in meaningful activities. The purpose of this study was to analyse physical factors influencing independent use of manual and power wheelchairs in a total population of children with cerebral palsy (CP).
Methods
A cross-sectional study based on the most recent examination of all children with CP, born 2002–2013, reported into the Swedish cerebral palsy registry (CPUP), from January 2012 to June 2014. There were 2328 children (58 % boys, 42 % girls), aged 0–11 years, at all levels of gross motor function and hand function. Hazard ratios adjusted for age and sex were used to calculate the risk for not being able to self-propel based on Gross Motor Function Classification System (GMFCS) levels, upper extremity range of motion and hand function including Manual Ability Classification System (MACS), House functional classification system, Thumb-in-palm deformity, Zancolli (spasticity of wrist/finger flexors) and bimanual ability.
Results
In total 858 children used wheelchairs outdoors (692 manual, 20 power, 146 both). Only 10 % of the 838 children self-propelled manual wheelchairs, while 90 % were pushed. In contrast 75 % of the 166 children who used power mobility outdoors were independent. Poor hand function was the greatest risk factor for being unable to self-propel a manual wheelchair, while classification as GMFCS V or MACS IV-V were the greatest risk factors for not being able to use a power wheelchair independently.
Conclusions
The majority of children with CP, aged 0–11 years did not self-propel manual wheelchairs regardless of age, gross motor function, range of motion or manual abilities. Power mobility should be considered at earlier ages to promote independent mobility for all children with CP who require a wheelchair especially outdoors.
Original language | English |
---|---|
Article number | 165 |
Pages (from-to) | 1-8 |
Number of pages | 8 |
Journal | BMC Pediatrics |
Volume | 16 |
DOIs | |
Publication status | Published online - 10 Oct 2016 |
Keywords
- Cerebral palsy
- Children
- Wheelchairs
- Mobility
- Power
- Hand function
- Range of motion
- GMFCS
- MACS