Abstract
The use of smartphones for activity recognition is becoming common practice. Most approaches use a single pretrained classifier to recognize activities for all users. Research studies, however, have highlighted how a personalized trained classifier could provide better accuracy. Data labeling for ground truth generation, however, is a time-consuming process. The challenge is further exacerbated when opting for a personalized approach that requires user specific datasets to be labeled, making conventional supervised approaches unfeasible. In this work, we present early results on the investigation into a weakly supervised approach for online personalized activity recognition. This paper describes: (i) a heuristic to generate weak labels used for personalized training, (ii) a comparison of accuracy obtained using a weakly supervised classifier against a conventional ground truth trained classifier. Preliminary results show an overall accuracy of 87% of a fully supervised approach against a 74% with the proposed weakly supervised approach.
Original language | English |
---|---|
Title of host publication | 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) |
Publisher | IEEE |
Pages | 567-572 |
ISBN (Print) | 978-1-5386-3227-7 |
DOIs | |
Publication status | Published (in print/issue) - 8 Oct 2018 |
Event | 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom Workshops) - Athens, Greece Duration: 19 Mar 2018 → 23 Mar 2018 |
Conference
Conference | 2018 IEEE International Conference on Pervasive Computing and Communications (PerCom Workshops) |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 19/03/18 → 23/03/18 |