Overexpression of the Na/Ca. exchanger shapes stimulus-induced cytosolic Ca2+ oscillations in insulin-producing BRIN-BD11 cells

F Van Eylen, OD Horta, A Barez, A Kamagate, Peter Flatt, R Macianskiene, K Mubagwa, A Herchuelz

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)

Abstract

In response to glucose, mouse beta-cells display slow oscillations of the membrane potential and cytosolic free Ca2+ concentration ([Ca2+](i))whereas rat beta-cells display a staircase increase in these parameters. Mouse and rat islet cells differ also by their level of Na/Ca exchanger (NCX) activity. The view that the inward current generated by Na/Ca exchange shapes stimulus-induced electrical activity and [Ca2+](i) oscillations in pancreatic beta-cells was examined in insulin-producing BRIN-BD11 cells overexpressing the Na/Ca exchanger BRIN-BD11 cells were stably transfected with NCX1.7, one of the exchanger isoforms identified in the beta-cell. Overexpression could be assessed at the mRNA and protein level. Appropriate targeting to the plasma membrane could be assessed by microfluorescence and the increase in Na/Ca exchange activity. In response to K+, overexpressing cells showed a more rapid increase in [Ca2+](i) on membrane depolarization as well as a more rapid decrease of [Ca2+](i) on membrane repolarization. In response to glucose and tolbutamide, control BRIN cells showed large amplitude [Ca2+](i) oscillations. In, contrast, overexpressing cells showed a staircase increasein[Ca2+](i) without such large oscillations. Diazoxide-induced membrane hyperpolarization restored large amplitude [Ca2+](i) oscillations in overexpressing cells. The present data confirm that Na/Ca exchange plays a significant role in the rat beta-cell [Ca2+](i) homeostasis, the exchanger being a versatile system allowing both Ca2+ entry and outflow. Our data suggest that the current generated by the exchanger shapes stimulus-induced membrane potential and [Ca2+](i) oscillations in insulin-secreting cells, with the difference in electrical activity and [Ca2+](i) behavior seen in mouse and rat beta-cells resulting in part from a difference in Na/Ca exchange activity between these two cells.
Original languageEnglish
Pages (from-to)366-375
JournalDiabetes
Volume51
Issue number2
Publication statusPublished (in print/issue) - Feb 2002

Fingerprint

Dive into the research topics of 'Overexpression of the Na/Ca. exchanger shapes stimulus-induced cytosolic Ca2+ oscillations in insulin-producing BRIN-BD11 cells'. Together they form a unique fingerprint.

Cite this