Optimizing the 12-lead electrocardiogram: a data driven approach to locating alternative recording sites

D Finlay, CD Nugent, Jan A Kors, Gerard van_Herpen, M Donnelly, PJ McCullagh, ND Black

Research output: Contribution to journalArticle

10 Citations (Scopus)

Abstract

Background: Despite its widespread use, the limitations of the 12-lead electrocardiogram (ECG) are undisputed. The main deficiency is that just a small area of the precordium is interrogated and for some abnormalities information may be transmitted to a region of the body surface where information is not recorded. In this study, we attempted to optimize the 12-lead ECG by using a datadriven approach to suggest alternate recording sites. Methods: A sequential lead selection algorithm was applied to a set of 744 body surface potential maps (BSPMs), consisting of recordings from subjects with myocardial infarction, left ventricular hypertrophy, and no apparent disease. A number of scenarios were investigated in which pairs of precordial leads were repositioned; these pairs were V3 and V5, V4 and V5, and V4 and V6. The algorithm was also used to find optimal positions for all 6 precordial leads. Result: Through estimation of entire surface potential distributions it was found that each of the scenarios, with 2 leads repositioned, captured more information than the standard 12-lead ECG. The scenario with V4 and V6 repositioned performed best with a root mean square error of 22.3 microvolts and a correlation coefficient of 0.967. This configuration also fared favorably when compared to the scenario where all 6 precordial leads were repositioned as optimizing all 6 leads offered no significant improvement. Conclusion: This study demonstrated the use of a lead selection algorithm in enhancing the 12-lead ECG. The results also indicated that repositioning just 2 precordial leads can provide the same level of information capture as that observed when all precordial leads are optimally placed.
LanguageEnglish
Pages292-299
JournalJournal of Electrocardiology
Volume40
Issue number3
Publication statusPublished - May 2007

Fingerprint

Electrocardiography
Body Regions
Left Ventricular Hypertrophy
Lead
Myocardial Infarction

Cite this

@article{793c3b8a0a6043f2aa05d039f77b0133,
title = "Optimizing the 12-lead electrocardiogram: a data driven approach to locating alternative recording sites",
abstract = "Background: Despite its widespread use, the limitations of the 12-lead electrocardiogram (ECG) are undisputed. The main deficiency is that just a small area of the precordium is interrogated and for some abnormalities information may be transmitted to a region of the body surface where information is not recorded. In this study, we attempted to optimize the 12-lead ECG by using a datadriven approach to suggest alternate recording sites. Methods: A sequential lead selection algorithm was applied to a set of 744 body surface potential maps (BSPMs), consisting of recordings from subjects with myocardial infarction, left ventricular hypertrophy, and no apparent disease. A number of scenarios were investigated in which pairs of precordial leads were repositioned; these pairs were V3 and V5, V4 and V5, and V4 and V6. The algorithm was also used to find optimal positions for all 6 precordial leads. Result: Through estimation of entire surface potential distributions it was found that each of the scenarios, with 2 leads repositioned, captured more information than the standard 12-lead ECG. The scenario with V4 and V6 repositioned performed best with a root mean square error of 22.3 microvolts and a correlation coefficient of 0.967. This configuration also fared favorably when compared to the scenario where all 6 precordial leads were repositioned as optimizing all 6 leads offered no significant improvement. Conclusion: This study demonstrated the use of a lead selection algorithm in enhancing the 12-lead ECG. The results also indicated that repositioning just 2 precordial leads can provide the same level of information capture as that observed when all precordial leads are optimally placed.",
author = "D Finlay and CD Nugent and Kors, {Jan A} and Gerard van_Herpen and M Donnelly and PJ McCullagh and ND Black",
year = "2007",
month = "5",
language = "English",
volume = "40",
pages = "292--299",
journal = "Journal of Electrocardiology",
issn = "0022-0736",
publisher = "Elsevier",
number = "3",

}

Optimizing the 12-lead electrocardiogram: a data driven approach to locating alternative recording sites. / Finlay, D; Nugent, CD; Kors, Jan A; van_Herpen, Gerard; Donnelly, M; McCullagh, PJ; Black, ND.

In: Journal of Electrocardiology, Vol. 40, No. 3, 05.2007, p. 292-299.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Optimizing the 12-lead electrocardiogram: a data driven approach to locating alternative recording sites

AU - Finlay, D

AU - Nugent, CD

AU - Kors, Jan A

AU - van_Herpen, Gerard

AU - Donnelly, M

AU - McCullagh, PJ

AU - Black, ND

PY - 2007/5

Y1 - 2007/5

N2 - Background: Despite its widespread use, the limitations of the 12-lead electrocardiogram (ECG) are undisputed. The main deficiency is that just a small area of the precordium is interrogated and for some abnormalities information may be transmitted to a region of the body surface where information is not recorded. In this study, we attempted to optimize the 12-lead ECG by using a datadriven approach to suggest alternate recording sites. Methods: A sequential lead selection algorithm was applied to a set of 744 body surface potential maps (BSPMs), consisting of recordings from subjects with myocardial infarction, left ventricular hypertrophy, and no apparent disease. A number of scenarios were investigated in which pairs of precordial leads were repositioned; these pairs were V3 and V5, V4 and V5, and V4 and V6. The algorithm was also used to find optimal positions for all 6 precordial leads. Result: Through estimation of entire surface potential distributions it was found that each of the scenarios, with 2 leads repositioned, captured more information than the standard 12-lead ECG. The scenario with V4 and V6 repositioned performed best with a root mean square error of 22.3 microvolts and a correlation coefficient of 0.967. This configuration also fared favorably when compared to the scenario where all 6 precordial leads were repositioned as optimizing all 6 leads offered no significant improvement. Conclusion: This study demonstrated the use of a lead selection algorithm in enhancing the 12-lead ECG. The results also indicated that repositioning just 2 precordial leads can provide the same level of information capture as that observed when all precordial leads are optimally placed.

AB - Background: Despite its widespread use, the limitations of the 12-lead electrocardiogram (ECG) are undisputed. The main deficiency is that just a small area of the precordium is interrogated and for some abnormalities information may be transmitted to a region of the body surface where information is not recorded. In this study, we attempted to optimize the 12-lead ECG by using a datadriven approach to suggest alternate recording sites. Methods: A sequential lead selection algorithm was applied to a set of 744 body surface potential maps (BSPMs), consisting of recordings from subjects with myocardial infarction, left ventricular hypertrophy, and no apparent disease. A number of scenarios were investigated in which pairs of precordial leads were repositioned; these pairs were V3 and V5, V4 and V5, and V4 and V6. The algorithm was also used to find optimal positions for all 6 precordial leads. Result: Through estimation of entire surface potential distributions it was found that each of the scenarios, with 2 leads repositioned, captured more information than the standard 12-lead ECG. The scenario with V4 and V6 repositioned performed best with a root mean square error of 22.3 microvolts and a correlation coefficient of 0.967. This configuration also fared favorably when compared to the scenario where all 6 precordial leads were repositioned as optimizing all 6 leads offered no significant improvement. Conclusion: This study demonstrated the use of a lead selection algorithm in enhancing the 12-lead ECG. The results also indicated that repositioning just 2 precordial leads can provide the same level of information capture as that observed when all precordial leads are optimally placed.

M3 - Article

VL - 40

SP - 292

EP - 299

JO - Journal of Electrocardiology

T2 - Journal of Electrocardiology

JF - Journal of Electrocardiology

SN - 0022-0736

IS - 3

ER -