Abstract
Background
To report ocular manifestations, clinical course, and therapeutic management of patients with molecular genetically confirmed keratitis-ichthyosis-deafness syndrome.
Methods
Four patients, aged 19 to 46, with keratitis-ichthyosis-deafness syndrome from across the UK were recruited for a general and ocular examination and GJB2 (Cx26) mutational analysis. The ocular examination included best-corrected visual acuity, slit-lamp bio-microscopy, and ocular surface assessment. Mutational analysis of the coding region of GJB2 (Cx26) was performed by bidirectional Sanger sequencing.
Results
All four individuals had the characteristic systemic features of keratitis-ichthyosis-deafness syndrome. Each patient was found to have a missense mutation, resulting in the substitution of aspartic acid with asparagine at codon 50 (p.D50N). Main ophthalmic features were vascularizing keratopathy, ocular surface disease, hyperkeratotic lid lesions, recurrent epithelial defects, and corneal stromal scarring. One patient had multiple surgical procedures, including superficial keratectomies and lamellar keratoplasty, which failed to prevent severe visual loss. In contrast, oral therapy with ketoconazole stabilized the corneal and skin disease in two other patients with keratitis-ichthyosis-deafness syndrome. The patient who underwent intracorneal bevacizumab injection showed a marked reduction in corneal vascularization following a single application.
Conclusions
Keratitis-ichthyosis-deafness syndrome is a rare ectodermal dysplasia caused by heterozygous mutations in GJB2 (Cx26) with a severe, progressive vascularizing keratopathy. Oral ketoconazole therapy may offer benefit in stabilizing the corneal and skin disease.
To report ocular manifestations, clinical course, and therapeutic management of patients with molecular genetically confirmed keratitis-ichthyosis-deafness syndrome.
Methods
Four patients, aged 19 to 46, with keratitis-ichthyosis-deafness syndrome from across the UK were recruited for a general and ocular examination and GJB2 (Cx26) mutational analysis. The ocular examination included best-corrected visual acuity, slit-lamp bio-microscopy, and ocular surface assessment. Mutational analysis of the coding region of GJB2 (Cx26) was performed by bidirectional Sanger sequencing.
Results
All four individuals had the characteristic systemic features of keratitis-ichthyosis-deafness syndrome. Each patient was found to have a missense mutation, resulting in the substitution of aspartic acid with asparagine at codon 50 (p.D50N). Main ophthalmic features were vascularizing keratopathy, ocular surface disease, hyperkeratotic lid lesions, recurrent epithelial defects, and corneal stromal scarring. One patient had multiple surgical procedures, including superficial keratectomies and lamellar keratoplasty, which failed to prevent severe visual loss. In contrast, oral therapy with ketoconazole stabilized the corneal and skin disease in two other patients with keratitis-ichthyosis-deafness syndrome. The patient who underwent intracorneal bevacizumab injection showed a marked reduction in corneal vascularization following a single application.
Conclusions
Keratitis-ichthyosis-deafness syndrome is a rare ectodermal dysplasia caused by heterozygous mutations in GJB2 (Cx26) with a severe, progressive vascularizing keratopathy. Oral ketoconazole therapy may offer benefit in stabilizing the corneal and skin disease.
Original language | English |
---|---|
Pages (from-to) | 16-22 |
Number of pages | 7 |
Journal | Ophthalmic Genetics |
Volume | 45 |
Issue number | 1 |
Early online date | 27 Sept 2023 |
DOIs | |
Publication status | Published online - 27 Sept 2023 |
Bibliographical note
Publisher Copyright:© 2023 Taylor & Francis Group, LLC.
Keywords
- Genetics (clinical)
- Ophthalmology
- Pediatrics, Perinatology and Child Health
- ectodermal dysplasia
- GJB2
- ocular manifestations
- Keratitis-ichthyosis-deafness syndrome