Novel rectangular biphasic and monophasic waveforms delivered by a radiofrequency-powered defibrillator compared with conventional capacitor-based waveforms in transvenous cardioversion of atrial fibrillation

SJ Walsh, G Manoharan, OJ Escalona, JA Santos, N Evans, JMCC Anderson, M Stevenson, JD Allen, JAA Adgey

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Aims To investigate the feasibility and efficacy of novel low-tilt biphasic waveforms in transvenous cardioversion of atrial fibrillation (AF), delivered by a radiofrequency-powered defibrillator. Methods and results The investigation was performed in three phases in an animal model of AF: a feasibility and efficacy study (in 10 adult Large White Landrace swine), comparison with low-tilt monophasic and standard capacitor-based waveforms, and an assessment of sequential shocks delivered over several pathways (in 15 adult Suffolk sheep). Defibrillation electrodes were positioned transvenously under fluoroscopic control in the high lateral right atrium and distal coronary sinus. When multiple defibrillation pathways were tested, a third electrode was also attached to the tower interatrial septum. The electrodes were then connected to a radiofrequency (RF)-powered defibrillator or a standard defibrillator. After confirmation of successful induction of sustained AF, defibrillation was attempted. Percentage success was calculated from the effects of all shocks delivered to all the animals within each set of experiments. Of the low-tilt (RF) biphasic waveforms delivered during internal atria[ cardioversion, 100% success was achieved with a 6/6 ms 100/ - 50 V waveform (1.45 +/- 0.01 J). This waveform was similar in efficacy to low-tilt (RF) monophasic waveforms (88 vs. 92% success, 1.58 +/- 0.01 vs. 2.67 +/- 0.03 J; P = NS; delivered energy 41% lower) and superior to equivalent voltage standard monophasic (50% success, 0.67 +/- 0.00 J; P < 0.001) and biphasic waveforms (72% success, 0.69 +/- 0.00 J; P = 0.03). Sequential shocks delivered over dual pathways did not improve the efficacy of low-tilt biphasic waveforms. Conclusion A tow-tilt biphasic waveform from a RF-powered defibrillator (6/6ms 100/-50V) is more efficacious than standard monophasic or biphasic waveforms (equivalent voltage) and is similar in efficacy to low-tilt monophasic waveforms.
Original languageEnglish
Pages (from-to)873-880
JournalEP - Europace
Volume8
Issue number10
DOIs
Publication statusPublished - Oct 2006

Keywords

  • atrial fibrillation
  • cardioversion
  • defibrillation
  • radiofrequency
  • wireless power delivery
  • transdermal atrial defibrillation
  • low-tilt waveform cardioversion.

Fingerprint Dive into the research topics of 'Novel rectangular biphasic and monophasic waveforms delivered by a radiofrequency-powered defibrillator compared with conventional capacitor-based waveforms in transvenous cardioversion of atrial fibrillation'. Together they form a unique fingerprint.

  • Cite this