Abstract
Objective: The granular glands of amphibians have long been known to produce many biologically active compounds. The aim of this study was to isolate and characterize insulinotropic peptides from the skin of Phyllomedusa trinitatis frog. Methods and Results: Crude secretions obtained by mild electrical stimulation of the dorsal skin surface were purified by reverse phase HPLC yielding 80 fractions. In acute incubations with glucose-responsive BRIN-BD11 cells, fractions 39-40 ( band 1) and fractions 43-46 ( band 2) significantly stimulated insulin release by 1.5 to 2.5-fold. Pooled fractions in bands 1 and 2 were rechromatographed to 4 homogeneous peaks, each with insulin-releasing activity. Mass spectrometry analysis was successfully completed for 3 peptides, indicating 2996.4, 3379.9, and 8326.4 Da. The sequence of the 2996.4 Da peptide was determined as ALWKDILKNVGKAAGKAVLNTVT-DMVNQ. This 28-amino-acid peptide has 100% homology with the C-terminal of the 75-amino-acid dermaseptin BIV precursor of a family of structurally related antimicrobial peptides in the skin of the Phyllomedusinae subfamily. Conclusion: These data demonstrate that the defensive skin secretions of P. trinitatis contain biologically active peptides, which may have mammalian counterparts and merit further investigation as insulin secretagogues.
Original language | English |
---|---|
Pages (from-to) | 110-115 |
Journal | Pancreas |
Volume | 29 |
Issue number | 2 |
Publication status | Published (in print/issue) - Aug 2004 |