Nonlinear voter models: the transition from invasion to coexistence

F Schweitzer, Laxmidhar Behera

    Research output: Contribution to journalArticlepeer-review

    60 Citations (Scopus)

    Abstract

    In nonlinear voter models the transitions between two states depend in a nonlinear manneron the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities on the global outcome of the dynamics for a homogeneous network where each node is connected to m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework for frequency dependent processes from which we derive the macroscopic dynamics for key variables, such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the pair approximation are obtained. We then apply these equations to determine a phase diagram in the parameter space that distinguishes between different dynamic regimes. The pair approximation allows us to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and – most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions fromthe mean-field phase diagram and are confirmed by extensive computer simulations of the microscopicdynamics.PACS. 87.23.Cc
    Original languageEnglish
    Pages (from-to)301-318
    JournalEuropean Physical Journal B: Condensed Matter and Complex Systems
    Volume67
    Issue number3
    DOIs
    Publication statusPublished (in print/issue) - 2009

    Bibliographical note

    Reference text: 1. D. Abrams, S. Strogatz, Nature 424, 900 (2003)
    2. P.S. Albin, The Analysis of Complex Socioeconomic
    Systems (Lexington Books, London, 1975)
    3. J. Antonovics, P. Kareiva, Philos. Trans. R. Soc. London
    B 319, 601 (1988)
    4. L. Behera, F. Schweitzer, Int. J. Mod. Phys. C 14, 1331
    (2003)
    5. E. Ben-Naim, L. Frachebourg, P.L. Krapivsky, Phys. Rev.
    E 53, 3078 (1996)
    6. E. Ben-Naim, P. Krapivsky, S. Redner, Physica D:
    Nonlinear Phenomena 183, 190 (2003)
    7. A.T. Bernardes, D. Stauffer, J. Kertesz, Eur. Phys. J. B
    25, 123 (2002)
    8. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys.
    (2008) http://arxiv.org/abs/0710.3256
    9. C. Castellano, V. Loreto, A. Barrat, F. Cecconi, D. Parisi,
    Phys. Rev. E 71, 066107 (2005)
    10. C. Castellano, D. Vilone, A. Vespignani, Europhys. Lett.
    63, 153 (2003)
    11. X. Castello, V. Egu´ıluz, M. San Miguel, New J. Phys. 8,
    308 (2006)
    12. R.N. Costa Filho, M.P. Almeida, J.S. Andrade, J.E.
    Moreira, Phys. Rev. E 60, 1067 (1999)
    13. J.T. Cox, D. Griffeath, Annals of Probability 14, 347
    (1986)
    14. L. Dall’Asta, C. Castellano, Europhys. Lett. 77, 60005
    (2007)
    15. M. De Oliveira, J. Mendes,M. Santos, J. Phys. A 26, 2317
    (1993)
    16. I. Dornic, H. Chat´e, J. Chave, H. Hinrichsen, Phys. Rev.
    Lett. 87, 045701 (2001)
    17. J. Drouffe, C. Godr`eche, J. Phys. A: Mathematical and
    General 32, 249 (1999)
    18. R. Durrett, S. Levin, Theoretical Population Biology 46,
    363 (1994)
    19. L. Frachebourg, P. Krapivsky, Phys. Rev. E 53, R3009
    (1996)
    20. R.A. Holley, T.M. Liggett, Annals of Probability 3, 643
    (1975)
    21. J. Ho�lyst, K. Kacperski, F. Schweitzer, Physica A 285, 199
    (2000)
    22. T.H. Keitt, M.A. Lewis, R.D. Holt, The American
    Naturalist 157, 203 (2001)
    23. B.E. Kendall, O.N. Bjørnstad, J. Bascompte, T.H. Keitt,
    W.F. Fagan, The American Naturalist 155, 628 (2000)
    24. M. Kimura, G.H. Weiss, Genetics 49, 313 (1964)
    25. P. Krapivsky, Phys. Rev. A 45, 1067 (1992)
    26. P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701
    (2003)
    27. T.M. Liggett, Annals of Probability 22, 764 (1994)
    28. T.M. Liggett, Stochastic Interacting Systems, Grundlehren
    der mathematischen Wissenschaften (Springer, Berlin,
    1999), Vol. 342
    29. J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath, S. Levin,
    Theoretical Population Biology 55, 270 (1999)
    30. C. Moore, J. Stat. Phys. 88, 795 (1997)
    31. H. M¨uhlenbein, R. H¨ons, Advances in Complex Systems
    5, 301 (2002)
    32. M. Nakamaru, H. Matsuda, Y. Iwasa, J. Theor. Biology
    184, 65 (1997)
    33. C. Neuhauser, Theoretical Population Biology 56, 203
    (1999)
    34. A. Nowak, M. Kus, J. Urbaniak, T. Zarycki, Physica A
    287, 613 (2000)
    35. N.A. Oomes, D. Griffeath, C. Moore, New Constructions
    in cellular automata (Oxford Universitiy Press, 2002), pp.
    207–230
    36. S.W. Pacala, J.A. Silander, Jr., The American Naturalist
    125, 385 (1985)
    37. S. Redner, A guide to first-passage processes (Cambridge
    University Press, Cambridge, 2001)
    38. F.J. Rohlf, G.D. Schnell, The American Naturalist 105,
    295 (1971)
    39. T. Schelling, Am. Econ. Rev. 59, 488 (1969)
    40. F. Schweitzer, Brownian Agents and Active Particles.
    Collective Dynamics in the Natural and Social Sciences,
    Springer Series in Synergetics (Springer, Berlin, 2003)
    41. F. Schweitzer, L. Behera, H. M¨uhlenbein, Advances in
    Complex Systems 5, 269 (2002)
    42. F. Schweitzer, J. Ho�lyst, Eur. Phys. J. B 15, 723 (2000)
    43. F. Slanina, H. Lavicka, Eur. Phys. J. B 35, 279 (2003)
    44. V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)
    45. H.-U. Stark, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett.
    101, 018701 (2008)
    46. H.-U. Stark, C.J. Tessone, F. Schweitzer, Advances in
    Complex Systems 11, 87 (2008)
    47. K. Suchecki, V.M. Egu´ıluz, M. San Miguel, Europhys.
    Lett. 69, 228 (2005)
    48. K. Suchecki, V.M. Egu´ıluz, M. San Miguel, Phys. Rev. E
    72, 036132 (2005)
    49. G. Szab´o, T. Antal, P. Szab´o, M. Droz, Phys. Rev. E 62,
    1095 (2000)
    50. F. Vazquez, V.M. Eguiluz, M.S. Miguel, Phys. Rev. Lett.
    100, 108702 (2008)
    51. F. Vazquez, C. Lopez, Phys. Rev. E 78, 061127 (2008)
    52. W. Weidlich, J. Mathematical Sociology 18, 267 (1994

    Keywords

    • Population dynamics and ecological pattern formation
    • Dynamics of social
    • systems

    Fingerprint

    Dive into the research topics of 'Nonlinear voter models: the transition from invasion to coexistence'. Together they form a unique fingerprint.

    Cite this