Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study

Jaishree Jalewa, Alok Joshi, TM McGinnity, G Prasad, KongFatt Wong-Lin, Christian Holscher

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA’s GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN’s 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system’s dynamics. We find that if the connections from 5-HT to LHA’s GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.
LanguageEnglish
Pagese88003
JournalPLoS ONE
Volume9
Issue number2
DOIs
Publication statusPublished - 6 Feb 2014

Fingerprint

Lateral Hypothalamic Area
Serotonin
GABAergic Neurons
Neurons
Serotonin Receptors
Dorsal Raphe Nucleus
Synaptic Transmission
Fluorescent Antibody Technique
Sleep
Anxiety
Depression
Staining and Labeling
Ligands

Cite this

@article{36f7be30e9f84ac9aef13055a71fa14d,
title = "Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study",
abstract = "Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA’s GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN’s 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system’s dynamics. We find that if the connections from 5-HT to LHA’s GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.",
author = "Jaishree Jalewa and Alok Joshi and TM McGinnity and G Prasad and KongFatt Wong-Lin and Christian Holscher",
year = "2014",
month = "2",
day = "6",
doi = "10.1371/journal.pone.0088003",
language = "English",
volume = "9",
pages = "e88003",
journal = "PLoS ONE",
issn = "1932-6203",
number = "2",

}

Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study. / Jalewa, Jaishree; Joshi, Alok; McGinnity, TM; Prasad, G; Wong-Lin, KongFatt; Holscher, Christian.

In: PLoS ONE, Vol. 9, No. 2, 06.02.2014, p. e88003.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Neural Circuit Interactions between the Dorsal Raphe Nucleus and the Lateral Hypothalamus: An Experimental and Computational Study

AU - Jalewa, Jaishree

AU - Joshi, Alok

AU - McGinnity, TM

AU - Prasad, G

AU - Wong-Lin, KongFatt

AU - Holscher, Christian

PY - 2014/2/6

Y1 - 2014/2/6

N2 - Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA’s GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN’s 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system’s dynamics. We find that if the connections from 5-HT to LHA’s GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.

AB - Orexinergic/hypocretinergic (Ox) neurotransmission plays an important role in regulating sleep, as well as in anxiety and depression, for which the serotonergic (5-HT) system is also involved in. However, little is known regarding the direct and indirect interactions between 5-HT in the dorsal raphe nucleus (DRN) and Ox neurons in the lateral hypothalamus (LHA). In this study, we report the additional presence of 5-HT1BR, 5-HT2AR, 5-HT2CR and fast ligand-gated 5-HT3AR subtypes on the Ox neurons of transgenic Ox-enhanced green fluorescent protein (Ox-EGFP) and wild type C57Bl/6 mice using single and double immunofluorescence (IF) staining, respectively, and quantify the colocalization for each 5-HT receptor subtype. We further reveal the presence of 5-HT3AR and 5-HT1AR on GABAergic neurons in LHA. We also identify NMDAR1, OX1R and OX2R on Ox neurons, but none on adjacent GABAergic neurons. This suggests a one-way relationship between LHA’s GABAergic and Ox neurons, wherein GABAergic neurons exerts an inhibitory effect on Ox neurons under partial DRN’s 5-HT control. We also show that Ox axonal projections receive glutamatergic (PSD-95 immunopositive) and GABAergic (Gephyrin immunopositive) inputs in the DRN. We consider these and other available findings into our computational model to explore possible effects of neural circuit connection types and timescales on the DRN-LHA system’s dynamics. We find that if the connections from 5-HT to LHA’s GABAergic neurons are weakly excitatory or inhibitory, the network exhibits slow oscillations; not observed when the connection is strongly excitatory. Furthermore, if Ox directly excites 5-HT neurons at a fast timescale, phasic Ox activation can lead to an increase in 5-HT activity; no significant effect with slower timescale. Overall, our experimental and computational approaches provide insights towards a more complete understanding of the complex relationship between 5-HT in the DRN and Ox in the LHA.

U2 - 10.1371/journal.pone.0088003

DO - 10.1371/journal.pone.0088003

M3 - Article

VL - 9

SP - e88003

JO - PLoS ONE

T2 - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 2

ER -