N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity

BD Green, MH Mooney, Victor Gault, Nigel Irwin, CJ Bailey, P Harriott, B Greer, Finbarr O'Harte, Peter Flatt

Research output: Contribution to journalArticle

Abstract

Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50 0.37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P
LanguageEnglish
Pages379-388
JournalJournal of Endrocrinology
Volume180
Issue number3
Publication statusPublished - Mar 2004

Fingerprint

Dipeptidyl Peptidase 4
Glucagon-Like Peptide 1
Hypoglycemic Agents
Inhibitory Concentration 50
glucagon-like peptide 1 (7-36)amide
Type 2 Diabetes Mellitus
Half-Life
Glucose
N-pyroglutamyl-glucagon-like peptide-1 (7-36)amide
N-acetyl-glucagon-like peptide-1 (7-36)amide

Cite this

@article{fea24a24bdeb44d2acb1859b279b072b,
title = "N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity",
abstract = "Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50 0.37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P",
author = "BD Green and MH Mooney and Victor Gault and Nigel Irwin and CJ Bailey and P Harriott and B Greer and Finbarr O'Harte and Peter Flatt",
year = "2004",
month = "3",
language = "English",
volume = "180",
pages = "379--388",
journal = "Journal of Endrocrinology",
issn = "0022-0795",
number = "3",

}

TY - JOUR

T1 - N-terminal His(7)-modification of glucagon-like peptide-1(7-36) amide generates dipeptidyl peptidase IV-stable analogues with potent antihyperglycaemic activity

AU - Green, BD

AU - Mooney, MH

AU - Gault, Victor

AU - Irwin, Nigel

AU - Bailey, CJ

AU - Harriott, P

AU - Greer, B

AU - O'Harte, Finbarr

AU - Flatt, Peter

PY - 2004/3

Y1 - 2004/3

N2 - Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50 0.37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P

AB - Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50 0.37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P

M3 - Article

VL - 180

SP - 379

EP - 388

JO - Journal of Endrocrinology

T2 - Journal of Endrocrinology

JF - Journal of Endrocrinology

SN - 0022-0795

IS - 3

ER -