N-terminal glycation of cholecystokinin-8 abolishes its insulinotropic action on clonal pancreatic B-cells

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

Monoglycated cholecystokinin octapeptide (Asp(1)-glucitol CCK-X) was prepared under hyperglycaemic reducing conditions and purified by reverse phase-high performance liquid chromatography. Electrospray ionisation mass spectrometry and automated Edman degradation demonstrated that CCK-8 was glycated specifically at the amino-terminal Asp(1) residue. Effects of Asp(1)-glucitol CCK-8 and CCK-8 on insulin secretion were examined using glucose-responsive clonal BRIN-BD11 cells. In acute (20 min) incubations, 10(-10) mol/l CCK-8 enhanced insulin release by 1.2-1.5-fold at 5.6-11.1 mmol/l glucose. The stimulatory effect induced by 10(-10) mom CCK-8 was abolished following glycation. At 5.6 mmol/l glucose, CCK-8 at concentrations ranging from 10(-11) to 10(-7) mol/l induced a significant 1.6-1.9-fold increase in insulin secretion. Insulin output in the presence of Asp(1)-glucitol CCK-8 over the concentration range 10(-11)-10(-7) mol/l was decreased by 21-35% compared with CCK-8, and its insulinotropic action was effectively abolished. Asp(1)-glucitol CCK-8 at 10(-8) mol/l also completely blocked the stimulatory effects of 10(-11)-10(-8) mol/l CCK-8. These data indicate that structural modification by glycation at the amino-terminal Asp(1) residue effectively abolishes and/or antagonises the insulinotropic activity of CCK-8. (C) 1999 Elsevier Science B.V. All rights reserved.
LanguageEnglish
Pages60-67
JournalBIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH
Volume1452
Issue number1
Publication statusPublished - Oct 1999

Fingerprint

Sincalide
Insulin-Secreting Cells
Viperidae
Sorbitol
Insulin
Glucose
cholecystokinin 8
Electrospray Ionization Mass Spectrometry

Cite this

@article{db43b5d6adb24a0391444687ebd7213c,
title = "N-terminal glycation of cholecystokinin-8 abolishes its insulinotropic action on clonal pancreatic B-cells",
abstract = "Monoglycated cholecystokinin octapeptide (Asp(1)-glucitol CCK-X) was prepared under hyperglycaemic reducing conditions and purified by reverse phase-high performance liquid chromatography. Electrospray ionisation mass spectrometry and automated Edman degradation demonstrated that CCK-8 was glycated specifically at the amino-terminal Asp(1) residue. Effects of Asp(1)-glucitol CCK-8 and CCK-8 on insulin secretion were examined using glucose-responsive clonal BRIN-BD11 cells. In acute (20 min) incubations, 10(-10) mol/l CCK-8 enhanced insulin release by 1.2-1.5-fold at 5.6-11.1 mmol/l glucose. The stimulatory effect induced by 10(-10) mom CCK-8 was abolished following glycation. At 5.6 mmol/l glucose, CCK-8 at concentrations ranging from 10(-11) to 10(-7) mol/l induced a significant 1.6-1.9-fold increase in insulin secretion. Insulin output in the presence of Asp(1)-glucitol CCK-8 over the concentration range 10(-11)-10(-7) mol/l was decreased by 21-35{\%} compared with CCK-8, and its insulinotropic action was effectively abolished. Asp(1)-glucitol CCK-8 at 10(-8) mol/l also completely blocked the stimulatory effects of 10(-11)-10(-8) mol/l CCK-8. These data indicate that structural modification by glycation at the amino-terminal Asp(1) residue effectively abolishes and/or antagonises the insulinotropic activity of CCK-8. (C) 1999 Elsevier Science B.V. All rights reserved.",
author = "Yasser Abdel-Wahab and Finbarr O'Harte and MH Mooney and JM Conlon and Peter Flatt",
year = "1999",
month = "10",
language = "English",
volume = "1452",
pages = "60--67",
journal = "BBA - General Subjects",
issn = "0304-4165",
publisher = "Elsevier",
number = "1",

}

TY - JOUR

T1 - N-terminal glycation of cholecystokinin-8 abolishes its insulinotropic action on clonal pancreatic B-cells

AU - Abdel-Wahab, Yasser

AU - O'Harte, Finbarr

AU - Mooney, MH

AU - Conlon, JM

AU - Flatt, Peter

PY - 1999/10

Y1 - 1999/10

N2 - Monoglycated cholecystokinin octapeptide (Asp(1)-glucitol CCK-X) was prepared under hyperglycaemic reducing conditions and purified by reverse phase-high performance liquid chromatography. Electrospray ionisation mass spectrometry and automated Edman degradation demonstrated that CCK-8 was glycated specifically at the amino-terminal Asp(1) residue. Effects of Asp(1)-glucitol CCK-8 and CCK-8 on insulin secretion were examined using glucose-responsive clonal BRIN-BD11 cells. In acute (20 min) incubations, 10(-10) mol/l CCK-8 enhanced insulin release by 1.2-1.5-fold at 5.6-11.1 mmol/l glucose. The stimulatory effect induced by 10(-10) mom CCK-8 was abolished following glycation. At 5.6 mmol/l glucose, CCK-8 at concentrations ranging from 10(-11) to 10(-7) mol/l induced a significant 1.6-1.9-fold increase in insulin secretion. Insulin output in the presence of Asp(1)-glucitol CCK-8 over the concentration range 10(-11)-10(-7) mol/l was decreased by 21-35% compared with CCK-8, and its insulinotropic action was effectively abolished. Asp(1)-glucitol CCK-8 at 10(-8) mol/l also completely blocked the stimulatory effects of 10(-11)-10(-8) mol/l CCK-8. These data indicate that structural modification by glycation at the amino-terminal Asp(1) residue effectively abolishes and/or antagonises the insulinotropic activity of CCK-8. (C) 1999 Elsevier Science B.V. All rights reserved.

AB - Monoglycated cholecystokinin octapeptide (Asp(1)-glucitol CCK-X) was prepared under hyperglycaemic reducing conditions and purified by reverse phase-high performance liquid chromatography. Electrospray ionisation mass spectrometry and automated Edman degradation demonstrated that CCK-8 was glycated specifically at the amino-terminal Asp(1) residue. Effects of Asp(1)-glucitol CCK-8 and CCK-8 on insulin secretion were examined using glucose-responsive clonal BRIN-BD11 cells. In acute (20 min) incubations, 10(-10) mol/l CCK-8 enhanced insulin release by 1.2-1.5-fold at 5.6-11.1 mmol/l glucose. The stimulatory effect induced by 10(-10) mom CCK-8 was abolished following glycation. At 5.6 mmol/l glucose, CCK-8 at concentrations ranging from 10(-11) to 10(-7) mol/l induced a significant 1.6-1.9-fold increase in insulin secretion. Insulin output in the presence of Asp(1)-glucitol CCK-8 over the concentration range 10(-11)-10(-7) mol/l was decreased by 21-35% compared with CCK-8, and its insulinotropic action was effectively abolished. Asp(1)-glucitol CCK-8 at 10(-8) mol/l also completely blocked the stimulatory effects of 10(-11)-10(-8) mol/l CCK-8. These data indicate that structural modification by glycation at the amino-terminal Asp(1) residue effectively abolishes and/or antagonises the insulinotropic activity of CCK-8. (C) 1999 Elsevier Science B.V. All rights reserved.

M3 - Article

VL - 1452

SP - 60

EP - 67

JO - BBA - General Subjects

T2 - BBA - General Subjects

JF - BBA - General Subjects

SN - 0304-4165

IS - 1

ER -