Multi-compartment centrifugal electrospinning based composite fibers

Li Wang, Zeeshan Ahmad, Jie Huang, Jing Song Li, Ming Wei Chang

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)
36 Downloads (Pure)


Multi-faceted technological advances in fiber science have proven to be invaluable in several emerging biomaterial and biomedical engineering applications. In the last decade, notable fiber engineering advances have been demonstrated ranging from co-axial flows (for micron and nano-scaled layering), non-concentric flows (for Janus composites) and even 3D printing (for controlled alignment). The ES process is however limited, both for commercial impact (low production rates) and also in its facile capability to deliver reliable mimicry of numerous biological tissues which comprise blended and aligned fibers (e.g. tendons and ligaments). In the technological advance demonstrated here, a combinatorial multi-compartment centrifugal electrospinning (CMCCE) system is developed and demonstrated. A proof-of-concept enabling multiple formulation solution hosting (including combinatorial grading) in a single centrifugal electrospinning system (CES) comprising one spinneret is shown. Using this process, controlled blending and tuning of resulting fibrous membrane properties (contact angle and active release behavior) via aligned and phased fiber mat composition is demonstrated. In addition, the CMCCE process is capable of replicating production rates of recently developed centrifugal electrospinning systems (∼120 g/h), while potentially permitting better mimicry of naturally occurring fibrous tissue blends. It is envisaged the advance in technology will be ideally suited to engineer synthetic fibrous biomaterials with greater host surface replication and will fulfil production rate requirements for the industrial sector.

Original languageEnglish
Pages (from-to)541-549
Number of pages9
JournalChemical Engineering Journal
Early online date31 Jul 2017
Publication statusPublished (in print/issue) - 15 Dec 2017


  • Centrifugal electrospinning
  • Combinatorial
  • Composition
  • Fiber
  • Multi-compartment


Dive into the research topics of 'Multi-compartment centrifugal electrospinning based composite fibers'. Together they form a unique fingerprint.

Cite this