Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis

Pritam Kumar Panda, Puja Kumari, Paritosh Patel, Shailesh Kumar Samal, Suman Mishra, Murtaza M Tambuwala, Ateet Dutt, Klara Hilscherova, Yogendra K. Mishra, Rajender S Varma, Mrutyunjay Suar, Rajeev Ahuja, Suresh K Verma

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
12 Downloads (Pure)

Abstract

The developmental rapidity of nanotechnology poses higher risks of exposure to humans and the environment through manufactured nanomaterials. The multitude of biological interfaces, such as DNA, proteins, membranes, and cell organelles, which come in contact with nanoparticles, is influenced by colloidal and dynamic forces. Consequently, the ensued nano-bio interface depends on dynamic forces, encompasses many cellular absorption mechanisms along with various biocatalytic activities, and biocompatibility that needs to be investigated in detail. Addressing the issue, the study offers a novel green synthesis strategy for antibacterial AgNPs with higher biocompatibility and elucidates the mechanistic in vivo biocompatibility of silver nanoparticles (AgNPs) at the cellular and molecular levels. The analysis ascertained the biosynthesis of G-AgNPs with the size of 25 ± 10 nm and zeta potential of-29.2 ± 3.0 mV exhibiting LC50 of 47.2 μg mL-1 in embryonic zebrafish. It revealed the mechanism as a consequence of abnormal physiological metabolism in oxidative stress and neutral lipid metabolism due to dose-dependent interaction with proteins such as he1a, sod1, PEX protein family, and tp53 involving amino acids such as arginine, glutamine and leucine leading to improper apoptosis. The research gave a detailed insight into the role of diverse AgNPs-protein interactions with a unique combinatorial approach from first-principles density functional theory and in silico analyses, thus paving a new pathway to comprehending their intrinsic properties and usage.

Original languageEnglish
Pages (from-to)1190-1210
Number of pages21
JournalGreen Chemistry
Volume24
Issue number3
Early online date22 Dec 2021
DOIs
Publication statusPublished (in print/issue) - 7 Feb 2022

Bibliographical note

Funding Information:
The authors acknowledge the financial support from the Swedish Research Council (VR grant no. 2016-06014) and Carl Tryggers Stiftelse for Vetenskaplig Forskning. Authors thank Research Infrastructure RECETOX RI (No. LM2018121) financed by the Ministry of Education, Youth and Sports, and Operational Programme Research, Development and Innovation – project CETOCOEN EXCELLENCE (No. CZ.02.1.01/0.0/0.0/ 17_043/0009632) for supportive background. YKM acknowledges funding by Interreg Deutschland–Denmark with money from the European Regional Development Fund, project number 096-1.1-18 (Access and Acceleration). MS and SKV acknowledge DBT-BUILDER program (BT/INF/22/SP42155/2021) for infrastructure support at KIIT UNIVERSITY.

Publisher Copyright:
© The Royal Society of Chemistry.

Keywords

  • Environmental Chemistry
  • Pollution

Fingerprint

Dive into the research topics of 'Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis'. Together they form a unique fingerprint.

Cite this