TY - JOUR
T1 - Modulation of glucose-induced insulin secretion by cytosolic redox state in clonal beta-cells
AU - Salgado, AP
AU - Pereira, FC
AU - Seica, RM
AU - Fernandes, AP
AU - Flatt, Peter
AU - Santos, RM
AU - Rosario, LM
AU - Ramasamy, R
PY - 1999/8
Y1 - 1999/8
N2 - Nutrient stimulation of pancreatic beta-cells increases the cellular reduced pyridine nucleotide content, but the specific role of cytosolic redox state in glucose-induced insulin release (GIIR) remains undetermined. The role of cytosolic redox state has been assessed (as reflected by the lactate/pyruvate ratio) in nutrient- and non-nutrient-induced insulin release using a recently established glucose-sensitive clonal beta-cell line (BRIN-BD11). Long-term exposure to the NAD(+) precursor vitamin nicotinic acid (NA, 100 mu M) was used to promote a more oxidized state in the cytosol. Glucose (2-16 mM) evoked a dose-dependent rise in the cytosolic NADH/NAD(+) ratio which was linearly related to the extent of GIIR. NA suppressed the glucose-induced rise in the NADH/NAD(+) ratio and concomitantly reduced GIIR by 44%. It also inhibited, by 47%, the average glucose-induced rise in cytosolic free Ca2+ concentration ([Ca2+](i), assessed by fura-2 microfluorometry from single cells). The latter effect was not accounted for by a reduction in the activity of voltage-sensitive Ca2+ channels, inasmuch as both high K+- and tolbutamide-induced [Ca2+](i) rises remained insensitive to NA exposure. NA did not affect insulin release evoked by any of the depolarizing agents, indicating that steps in the stimulus-secretion coupling cascade distal to Ca2+ influx are insensitive to changes in the cytosolic redox state. It is concluded that GIIR is partially controlled by the cytosolic redox state. Moreover, the impairment in GIIR caused by a shift toward a more oxidized state in the cytosol, originates from an attenuated [Ca2+](i) response. The latter is likely mediated by the influence of cytosolic redox state on specific metabolic pathways (NADH shuttle systems and/or the malonyl-CoA pathway), leading ultimately to enhancement of the activity of ATP-sensitive K+ channels. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.
AB - Nutrient stimulation of pancreatic beta-cells increases the cellular reduced pyridine nucleotide content, but the specific role of cytosolic redox state in glucose-induced insulin release (GIIR) remains undetermined. The role of cytosolic redox state has been assessed (as reflected by the lactate/pyruvate ratio) in nutrient- and non-nutrient-induced insulin release using a recently established glucose-sensitive clonal beta-cell line (BRIN-BD11). Long-term exposure to the NAD(+) precursor vitamin nicotinic acid (NA, 100 mu M) was used to promote a more oxidized state in the cytosol. Glucose (2-16 mM) evoked a dose-dependent rise in the cytosolic NADH/NAD(+) ratio which was linearly related to the extent of GIIR. NA suppressed the glucose-induced rise in the NADH/NAD(+) ratio and concomitantly reduced GIIR by 44%. It also inhibited, by 47%, the average glucose-induced rise in cytosolic free Ca2+ concentration ([Ca2+](i), assessed by fura-2 microfluorometry from single cells). The latter effect was not accounted for by a reduction in the activity of voltage-sensitive Ca2+ channels, inasmuch as both high K+- and tolbutamide-induced [Ca2+](i) rises remained insensitive to NA exposure. NA did not affect insulin release evoked by any of the depolarizing agents, indicating that steps in the stimulus-secretion coupling cascade distal to Ca2+ influx are insensitive to changes in the cytosolic redox state. It is concluded that GIIR is partially controlled by the cytosolic redox state. Moreover, the impairment in GIIR caused by a shift toward a more oxidized state in the cytosol, originates from an attenuated [Ca2+](i) response. The latter is likely mediated by the influence of cytosolic redox state on specific metabolic pathways (NADH shuttle systems and/or the malonyl-CoA pathway), leading ultimately to enhancement of the activity of ATP-sensitive K+ channels. (C) 1999 Elsevier Science Ireland Ltd. All rights reserved.
M3 - Article
VL - 154
SP - 79
EP - 88
JO - Molecular and Cellular Endocrinology
JF - Molecular and Cellular Endocrinology
IS - 1-2
ER -