Abstract
A simple mathematical model for how traffic flows along a road is introduced. The resulting first-order ordinary differential equations can be used as an application of solution techniques taught at A-level and first year undergraduate level, and as a motivator to encourage students to think critically about the physical interpretation of the results which the equation produces.
Original language | English |
---|---|
Pages (from-to) | 115-121 |
Journal | Teaching Mathematics and its Applications |
Volume | 18 |
Issue number | 3 |
DOIs | |
Publication status | Published (in print/issue) - Sept 1999 |
Bibliographical note
Reference text: 1. Wan, F. Y. M., "Mathematical Models and Their Analysis."Harper and Row, 1989.
2. Prigogine, I. and Herman, R., "Kinetic Theory of Vehicular
Traffic." American Elsevier, 1971.
3. Low, D. J. and Addison, P. S., A nonlinear temporal headway
model of traffic dynamics, Nonlinear Dynamics, 1998,
16, 127-151.
4. Resnick, M., "Turtles, Termites and Traffic Jams." MIT
Press, 1995.
5. Paramics web site: http:Hwww.paramics.com/
6. Tallarida, R. I., "Pocket Book of Integrals and
Mathematical Formulas." 2/e, CRC Press, 1992.
7. Daganzo, C. F., "Fundamentals of Transportation and
Traffic Operations." Pergamon, 1999.
Downloaded from http://teamat.oxfordjournals.org/ at university of ulster on December 10, 2013