Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer's Disease

B Sen Bhattacharya, Y Cakir, N Serap-Sengor, LP Maguire, D Coyle

Research output: Contribution to journalArticle

Abstract

The focus of this paper is to correlate the bifurcation behaviour of a thalamocortical neural mass model with the power spectral alpha (8–13 Hz) oscillatory activity in Electroencephalography (EEG). The aim is to understand the neural correlates of alpha rhythm slowing (decrease in mean frequency of oscillation), a hallmark in the EEG of Alzheimer's Disease (AD) patients. The neural mass model used, referred to herein as the modARm, is a modified version of Lopes da Silva's alpha rhythm model (ARm). Previously, the power spectral behaviour of the modARm was analysed in context to AD. In this work, we revisit the modARm to make a combined study of the dynamical behaviour of the model and its power spectral behaviour within the alpha band while simulating the hallmark neuropathological condition of ‘synaptic depletion’ in AD. The results show that the modARm exhibits two ‘operating modes’ in the time-domain i.e. a point attractor and a limit cycle mode; the alpha rhythmic content in the model output is maximal at the vicinity of the point of bifurcation. Furthermore, the inhibitory synaptic connectivity from the cells of the Thalamic Reticular Nucleus to the Thalamo-Cortical Relay cells significantly influence bifurcation behaviour—while a decrease in the inhibition can induce limit-cycle behaviour corresponding to abnormal brain states such as seizures, an increase in inhibition in awake state corresponding to a point attractor mode may result in the slowing of the alpha rhythms as observed in AD. These observations help emphasise the importance of bifurcation analysis of model behaviour in inferring the biological relevance of results obtained from power-spectral analysis of the neural models in the context of understanding neurodegeneration.
LanguageEnglish
Pages11-22
JournalNeurocomputing
Volume115
DOIs
Publication statusPublished - Sep 2013

Fingerprint

Alpha Rhythm
Bioelectric potentials
Alzheimer Disease
Electroencephalography
Thalamic Nuclei
Power (Psychology)
Seizures
Spectrum analysis
Brain

Cite this

@article{a4eb74adb45c412e9419eb045565398f,
title = "Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer's Disease",
abstract = "The focus of this paper is to correlate the bifurcation behaviour of a thalamocortical neural mass model with the power spectral alpha (8–13 Hz) oscillatory activity in Electroencephalography (EEG). The aim is to understand the neural correlates of alpha rhythm slowing (decrease in mean frequency of oscillation), a hallmark in the EEG of Alzheimer's Disease (AD) patients. The neural mass model used, referred to herein as the modARm, is a modified version of Lopes da Silva's alpha rhythm model (ARm). Previously, the power spectral behaviour of the modARm was analysed in context to AD. In this work, we revisit the modARm to make a combined study of the dynamical behaviour of the model and its power spectral behaviour within the alpha band while simulating the hallmark neuropathological condition of ‘synaptic depletion’ in AD. The results show that the modARm exhibits two ‘operating modes’ in the time-domain i.e. a point attractor and a limit cycle mode; the alpha rhythmic content in the model output is maximal at the vicinity of the point of bifurcation. Furthermore, the inhibitory synaptic connectivity from the cells of the Thalamic Reticular Nucleus to the Thalamo-Cortical Relay cells significantly influence bifurcation behaviour—while a decrease in the inhibition can induce limit-cycle behaviour corresponding to abnormal brain states such as seizures, an increase in inhibition in awake state corresponding to a point attractor mode may result in the slowing of the alpha rhythms as observed in AD. These observations help emphasise the importance of bifurcation analysis of model behaviour in inferring the biological relevance of results obtained from power-spectral analysis of the neural models in the context of understanding neurodegeneration.",
author = "{Sen Bhattacharya}, B and Y Cakir and N Serap-Sengor and LP Maguire and D Coyle",
year = "2013",
month = "9",
doi = "10.1016/j.neucom.2012.10.023",
language = "English",
volume = "115",
pages = "11--22",
journal = "Neurocomputing",
issn = "0925-2312",
publisher = "Elsevier",

}

Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer's Disease. / Sen Bhattacharya, B; Cakir, Y; Serap-Sengor, N; Maguire, LP; Coyle, D.

In: Neurocomputing, Vol. 115, 09.2013, p. 11-22.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer's Disease

AU - Sen Bhattacharya, B

AU - Cakir, Y

AU - Serap-Sengor, N

AU - Maguire, LP

AU - Coyle, D

PY - 2013/9

Y1 - 2013/9

N2 - The focus of this paper is to correlate the bifurcation behaviour of a thalamocortical neural mass model with the power spectral alpha (8–13 Hz) oscillatory activity in Electroencephalography (EEG). The aim is to understand the neural correlates of alpha rhythm slowing (decrease in mean frequency of oscillation), a hallmark in the EEG of Alzheimer's Disease (AD) patients. The neural mass model used, referred to herein as the modARm, is a modified version of Lopes da Silva's alpha rhythm model (ARm). Previously, the power spectral behaviour of the modARm was analysed in context to AD. In this work, we revisit the modARm to make a combined study of the dynamical behaviour of the model and its power spectral behaviour within the alpha band while simulating the hallmark neuropathological condition of ‘synaptic depletion’ in AD. The results show that the modARm exhibits two ‘operating modes’ in the time-domain i.e. a point attractor and a limit cycle mode; the alpha rhythmic content in the model output is maximal at the vicinity of the point of bifurcation. Furthermore, the inhibitory synaptic connectivity from the cells of the Thalamic Reticular Nucleus to the Thalamo-Cortical Relay cells significantly influence bifurcation behaviour—while a decrease in the inhibition can induce limit-cycle behaviour corresponding to abnormal brain states such as seizures, an increase in inhibition in awake state corresponding to a point attractor mode may result in the slowing of the alpha rhythms as observed in AD. These observations help emphasise the importance of bifurcation analysis of model behaviour in inferring the biological relevance of results obtained from power-spectral analysis of the neural models in the context of understanding neurodegeneration.

AB - The focus of this paper is to correlate the bifurcation behaviour of a thalamocortical neural mass model with the power spectral alpha (8–13 Hz) oscillatory activity in Electroencephalography (EEG). The aim is to understand the neural correlates of alpha rhythm slowing (decrease in mean frequency of oscillation), a hallmark in the EEG of Alzheimer's Disease (AD) patients. The neural mass model used, referred to herein as the modARm, is a modified version of Lopes da Silva's alpha rhythm model (ARm). Previously, the power spectral behaviour of the modARm was analysed in context to AD. In this work, we revisit the modARm to make a combined study of the dynamical behaviour of the model and its power spectral behaviour within the alpha band while simulating the hallmark neuropathological condition of ‘synaptic depletion’ in AD. The results show that the modARm exhibits two ‘operating modes’ in the time-domain i.e. a point attractor and a limit cycle mode; the alpha rhythmic content in the model output is maximal at the vicinity of the point of bifurcation. Furthermore, the inhibitory synaptic connectivity from the cells of the Thalamic Reticular Nucleus to the Thalamo-Cortical Relay cells significantly influence bifurcation behaviour—while a decrease in the inhibition can induce limit-cycle behaviour corresponding to abnormal brain states such as seizures, an increase in inhibition in awake state corresponding to a point attractor mode may result in the slowing of the alpha rhythms as observed in AD. These observations help emphasise the importance of bifurcation analysis of model behaviour in inferring the biological relevance of results obtained from power-spectral analysis of the neural models in the context of understanding neurodegeneration.

U2 - 10.1016/j.neucom.2012.10.023

DO - 10.1016/j.neucom.2012.10.023

M3 - Article

VL - 115

SP - 11

EP - 22

JO - Neurocomputing

T2 - Neurocomputing

JF - Neurocomputing

SN - 0925-2312

ER -