Methods for measuring seismicity rate changes: A review and a study of how the M-w 7.3 Landers earthquake affected the aftershock sequence of the M-w 6.1 Joshua Tree earthquake

D Marsan, SS Nalbant

    Research output: Contribution to journalArticle

    42 Citations (Scopus)

    Abstract

    The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process. In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped. Finally, we analyse the modulation in seismicity rates following the 1992, June 28 M-w 7.3 Landers earthquake in the region of the 1992, April 22 M-w 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.
    LanguageEnglish
    Pages1151-1185
    JournalPure and Applied Geophysics
    Volume162
    Issue number6-7
    Publication statusPublished - 2005

    Fingerprint

    aftershock
    seismicity
    earthquake
    active fault
    seismic wave
    rate
    method
    measuring
    perturbation

    Cite this

    @article{8b6b924ae55041abbdbb959e6783a012,
    title = "Methods for measuring seismicity rate changes: A review and a study of how the M-w 7.3 Landers earthquake affected the aftershock sequence of the M-w 6.1 Joshua Tree earthquake",
    abstract = "The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process. In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped. Finally, we analyse the modulation in seismicity rates following the 1992, June 28 M-w 7.3 Landers earthquake in the region of the 1992, April 22 M-w 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.",
    author = "D Marsan and SS Nalbant",
    year = "2005",
    language = "English",
    volume = "162",
    pages = "1151--1185",
    journal = "Pure and Applied Geophysics",
    issn = "0033-4553",
    number = "6-7",

    }

    TY - JOUR

    T1 - Methods for measuring seismicity rate changes: A review and a study of how the M-w 7.3 Landers earthquake affected the aftershock sequence of the M-w 6.1 Joshua Tree earthquake

    AU - Marsan, D

    AU - Nalbant, SS

    PY - 2005

    Y1 - 2005

    N2 - The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process. In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped. Finally, we analyse the modulation in seismicity rates following the 1992, June 28 M-w 7.3 Landers earthquake in the region of the 1992, April 22 M-w 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.

    AB - The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process. In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped. Finally, we analyse the modulation in seismicity rates following the 1992, June 28 M-w 7.3 Landers earthquake in the region of the 1992, April 22 M-w 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.

    M3 - Article

    VL - 162

    SP - 1151

    EP - 1185

    JO - Pure and Applied Geophysics

    T2 - Pure and Applied Geophysics

    JF - Pure and Applied Geophysics

    SN - 0033-4553

    IS - 6-7

    ER -