TY - JOUR
T1 - Mechanical exfoliation of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) providing graphene nanoplatelets that exhibit enhanced electrocatalysis
AU - Hayes, WI
AU - Li, M
AU - Lubarsky, G
AU - Papakonstantinou, P
PY - 2014/7/1
Y1 - 2014/7/1
N2 - A novel production method for graphene nanoplatelets (GPs) with enhanced electrocatalytic behaviour is presented. GPs show improvement in their oxygen reduction reaction (ORR) catalysis after prolonging the grinding of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Nitrogen doping of the GPs has inferred a further increase in ORR. The ORR onset potential, cathodic current magnitude and electron transfer efficiency have all improved as a direct consequence of increasing the graphite grinding duration from 30 min to 4 h. Atomic force microscopy has confirmed a decrease in the GP diameter and height as the grinding increases. Raman spectroscopy indicates a higher level of defects present after prolonging the graphite grinding in BMIM-PF6, most likely a result of the increased edge plane exposure. This increased edge plane appears to promote a higher level of nitrogen incorporation as the graphite grinding duration increases, as confirmed by X-ray photoelectron spectroscopy analysis. The stability of the cathodic current assessed by chronoamperometry analysis is higher for the GP and nitrogendoped graphene nanoplatelet (N-GP) samples than the platinum on carbon black (Pt/C). Thisstudy presents a novel process for the production of nitrogen doped graphene nanoplatelets, constituting a strategy for the up-scaled production of electrocatalysts.
AB - A novel production method for graphene nanoplatelets (GPs) with enhanced electrocatalytic behaviour is presented. GPs show improvement in their oxygen reduction reaction (ORR) catalysis after prolonging the grinding of graphite in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6). Nitrogen doping of the GPs has inferred a further increase in ORR. The ORR onset potential, cathodic current magnitude and electron transfer efficiency have all improved as a direct consequence of increasing the graphite grinding duration from 30 min to 4 h. Atomic force microscopy has confirmed a decrease in the GP diameter and height as the grinding increases. Raman spectroscopy indicates a higher level of defects present after prolonging the graphite grinding in BMIM-PF6, most likely a result of the increased edge plane exposure. This increased edge plane appears to promote a higher level of nitrogen incorporation as the graphite grinding duration increases, as confirmed by X-ray photoelectron spectroscopy analysis. The stability of the cathodic current assessed by chronoamperometry analysis is higher for the GP and nitrogendoped graphene nanoplatelet (N-GP) samples than the platinum on carbon black (Pt/C). Thisstudy presents a novel process for the production of nitrogen doped graphene nanoplatelets, constituting a strategy for the up-scaled production of electrocatalysts.
U2 - 10.1016/j.jpowsour.2014.06.168
DO - 10.1016/j.jpowsour.2014.06.168
M3 - Article
VL - 271
SP - 312
EP - 325
JO - Journal of Power Sources
JF - Journal of Power Sources
ER -