Abstract
Conductive nanocrystalline graphite has been deposited using plasma-enhanced chemical vapour deposition at 750 °C, directly onto silicon substrates without any catalyst and fabricated into micromechanical membrane and beam structures. Using the buckling profile of the membrane and beam structures, we measure a built-in strain of − 0.0142 and through wafer-bow measurement, a compressive stress of 436 MPa. From this we have calculated the Young's modulus of nanographite as 23.0 ± 2.7 GPa. This represents a scalable method for fabricating nanographite MEMS and NEMS devices via a microfabrication-compatible process and provides useful mechanical properties to enable design of future devices.
Original language | English |
---|---|
Article number | Volume 159 |
Pages (from-to) | 184-189 |
Number of pages | 6 |
Journal | Microelectronic Engineering |
DOIs | |
Publication status | Published - 22 Mar 2016 |