Abstract
Primary percutaneous coronary intervention (PPCI) is a minimally invasive procedure to unblock the arteries which carry blood to the heart. Referred patients are accepted or turned down for PPCI mainly based on the presence of ST segment elevation on the surface electrocardiogram. We explored the features which predict 30 days and 1-year mortality in accepted and turndown patients and report the performance of machine learning (ML) algorithms. Different ML algorithms, namely multiple logistic regression (MLR), decision tree (DT), and a support vector machine (SVM) were used for the prediction of 30 days and 1-year mortality. Upon significance of various features to predict the 30 days and 1-year mortality, the accuracy, sensitivity, and specificity were compared between algorithms. DT outperformed the other algorithms (SVM and MLR) to predict mortality of patients referred to the PPCI service. Greater sensitivity is achieved in predicting 30 days mortality in the accepted group compared to the turndown group, however, the former model included more features.
Original language | English |
---|---|
Title of host publication | 2020 Computing in Cardiology, CinC 2020 |
Place of Publication | Rimini, Italy |
Publisher | IEEE |
Pages | 1-4 |
Number of pages | 4 |
Volume | 47 |
Edition | 2020 |
ISBN (Electronic) | 978-1-7281-7382-5 |
ISBN (Print) | 978-1-7281-1105-6 |
DOIs | |
Publication status | Published (in print/issue) - 10 Feb 2021 |
Event | Computing in Cardiology 2020 - Palacongressi, Rimini, Italy Duration: 13 Sept 2020 → 16 Sept 2020 |
Publication series
Name | 2020 COMPUTING IN CARDIOLOGY |
---|---|
ISSN (Print) | 2325-8861 |
Conference
Conference | Computing in Cardiology 2020 |
---|---|
Abbreviated title | CinC20 |
Country/Territory | Italy |
City | Rimini |
Period | 13/09/20 → 16/09/20 |
Bibliographical note
Funding Information:The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This research is supported by the European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).
Publisher Copyright:
© 2020 Creative Commons; the authors hold their copyright.
Keywords
- Machine Learning
- PPCI Referral
- cathlab
- cardiology
- angioplasty