LSTM Network Classification of Dexterous Individual Finger Movements

Research output: Contribution to journalSpecial issuepeer-review

3 Downloads (Pure)

Abstract

Electrical activity is generated in the forearm muscles during muscular contractions that control dexterous movements of a human finger and thumb. Using this electrical activity as an input to train a neural network for the purposes of classifying finger movements is not straightforward. Low cost wearable sensors i.e. a Myo Gesture control armband , generally have a lower sampling rate when compared with medical grade EMG detection systems e.g. 200 Hz Vs 2000 Hz. Using a sensors such as the Myo coupled with the lower amplitude generated by individual finger movements makes it difficult to achieve high classification accuracy. Low sampling rate makes it challenging to distinguish between large quantities of subtle finger movements when using a single network. This research uses two networks which enables for the reduction in the number of movements in each network that are being classified; in turn improving the classification. This is achieved by developing and training LSTM networks that focus on the extension and flexion signals of the fingers and a separate network that is trained using thumb movement signal data. By following this method, this research have increased classification of the individual finger movements to between 90% and 100%.
Original languageEnglish
Pages (from-to)113-124
Number of pages12
JournalJournal of Advanced Computational Intelligence and Intelligent Informatics
Volume26
Issue number2
Publication statusPublished - 20 Mar 2022

Keywords

  • sEMG
  • LSTM

Fingerprint

Dive into the research topics of 'LSTM Network Classification of Dexterous Individual Finger Movements'. Together they form a unique fingerprint.

Cite this