Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties

S. Deshmukh, K. J. Sankaran, K. Srinivasu, S. Korneychuk, D. Banerjee, A. Barman, G. Bhattacharya, D. M. Phase, M. Gupta, J. Verbeeck, K. C. Leou, I. N. Lin, K. Haenen, S. S. Roy

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nanographitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/μm, a high current density of 1.94 mA/cm2 (at an applied field of 11.8 V/μm) and a large field enhancement factor of 3320 with a long life-time stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.

Original languageEnglish
Pages (from-to)118-125
Number of pages8
JournalDiamond and Related Materials
Volume83
DOIs
Publication statusPublished - 7 Feb 2018

Bibliographical note

Funding Information:
S. Deshmukh, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K. J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K. J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp.

Publisher Copyright:
© 2018 Elsevier B.V.

Gourav non-member of staff at time of publication - no AAM available

Keywords

  • Field electron emission
  • Localized emission
  • Nitrogen-doped diamond nanorods
  • Plasma illumination
  • Reactive ion etching

Fingerprint

Dive into the research topics of 'Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties'. Together they form a unique fingerprint.

Cite this