Abstract
The Little Ice Age is the most noted climatological event in recent history with dramatic consequences for a large part of the western European coastal landscape. A major morphological feature associated with this event is the
presence of large-scale transgressive dune fields that actively advanced inland, encroaching, in some cases, human settlements and directly affecting coastal communities. Several hypotheses exist to explain the formation of such features, which purport increased storminess, sea-level changes, or human activities as the major drivers of the relatively well-documented enhanced aeolian activity during this event. However, these hypotheses do not explain entirely the whole process by which dunes are set into movement. Here, we show the temporal and spatial distribution of this event in terms of impact over the coast, focusing on the mobilization of coastal dunes and then elaborate a new conceptual model that explains the onset and evolution pathways of coastal dunes after the impact of the Little Ice Age. Our model proposes the combined effect of storms and other parameters to explain the initiation phases of the process, when sand becomes available and blown by the very strong winds associated with documented higher frequency and intensity of storms occurring during this period.
presence of large-scale transgressive dune fields that actively advanced inland, encroaching, in some cases, human settlements and directly affecting coastal communities. Several hypotheses exist to explain the formation of such features, which purport increased storminess, sea-level changes, or human activities as the major drivers of the relatively well-documented enhanced aeolian activity during this event. However, these hypotheses do not explain entirely the whole process by which dunes are set into movement. Here, we show the temporal and spatial distribution of this event in terms of impact over the coast, focusing on the mobilization of coastal dunes and then elaborate a new conceptual model that explains the onset and evolution pathways of coastal dunes after the impact of the Little Ice Age. Our model proposes the combined effect of storms and other parameters to explain the initiation phases of the process, when sand becomes available and blown by the very strong winds associated with documented higher frequency and intensity of storms occurring during this period.
Original language | English |
---|---|
Pages (from-to) | 82-91 |
Number of pages | 10 |
Journal | Global and Planetary Change |
Volume | 175 |
Early online date | 13 Feb 2019 |
DOIs | |
Publication status | Published (in print/issue) - 1 Apr 2019 |
Keywords
- Little Ice Age
- Storminess
- Temperature
- Vegetation cover
- Climate
- Transgressive coastal dunes