L-alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis

GA Cunningham, Neville McClenaghan, Peter Flatt, P Newsholme

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

Acute effects of nutrient stimuli on pancreatic beta-cell function are widely reported; however, the chronic effects of insulinotropic amino acids, such as L-alanine, on pancreatic beta-cell function and integrity are unknown. In the present study, the effects of prolonged exposure (24 h) to the amino acid L-alanine on insulin secretory function, gene expression and pro-inflammatory cytokineinduced apoptosis were studied using clonal BRIN-BDII cells. Expression profiling of BRIN-BD I I cells chronically exposed to L-alanine was performed using oligonucleotide microarray analysis. The effect of alanine, the NOS (inducible nitric oxide synthase) inhibitor NMA (N-G -methyl-L-arginine acetate) or the NOS and NADPH oxidase inhibitor DPI (diphenylene iodonium) on apoptosis induced by a pro-inflammatory cytokine mix [IL- I beta (interleukin- I beta), TNF-alpha (tumour necrosis factor-a) and IFN-gamma (interferon-gamma)] was additionally assessed by flow cytometry. Culture for 24 h with 10 MM L-alanine resulted in desensitization to the subsequent acute insulin stimulatory effects Of L-alanine. This was accompanied by substantial changes in gene expression of BRIN-BD I I cells. Sixty-six genes were up-regulated; 1.8-fold, including many involved in cellular signalling, metabolism, gene regulation, protein synthesis, apoptosis and the cellular stress response. Subsequent functional experiments confirmed that L-alanine provided protection of BRIN-BD I I cells from pro-inflammatory cytokine-induced apoptosis. Protection from apoptosis was mimicked by NMA or DPI suggesting L-alanine enhances intracellular antioxidant generation. These observations indicate important long-term effects of L-alanine in regulating gene expression, secretory function and the integrity of insulin-secreting cells. Specific amino acids may therefore play a key role in beta-cell function in vivo.
LanguageEnglish
Pages447-455
JournalClinical Science
Volume109
Issue number5
DOIs
Publication statusPublished - Nov 2005

Fingerprint

Insulin-Secreting Cells
Alanine
Signal Transduction
Apoptosis
Cytokines
Gene Expression
Cell Line
Nitric Oxide Synthase Type II
Amino Acids
Arginine
Acetates
Tumor Necrosis Factor-alpha
Insulin
NADPH Oxidase
Microarray Analysis
Oligonucleotide Array Sequence Analysis
Interleukin-1
Interferon-gamma
Flow Cytometry
Antioxidants

Cite this

@article{02b97470b30e43bb967c42fb8d02024d,
title = "L-alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis",
abstract = "Acute effects of nutrient stimuli on pancreatic beta-cell function are widely reported; however, the chronic effects of insulinotropic amino acids, such as L-alanine, on pancreatic beta-cell function and integrity are unknown. In the present study, the effects of prolonged exposure (24 h) to the amino acid L-alanine on insulin secretory function, gene expression and pro-inflammatory cytokineinduced apoptosis were studied using clonal BRIN-BDII cells. Expression profiling of BRIN-BD I I cells chronically exposed to L-alanine was performed using oligonucleotide microarray analysis. The effect of alanine, the NOS (inducible nitric oxide synthase) inhibitor NMA (N-G -methyl-L-arginine acetate) or the NOS and NADPH oxidase inhibitor DPI (diphenylene iodonium) on apoptosis induced by a pro-inflammatory cytokine mix [IL- I beta (interleukin- I beta), TNF-alpha (tumour necrosis factor-a) and IFN-gamma (interferon-gamma)] was additionally assessed by flow cytometry. Culture for 24 h with 10 MM L-alanine resulted in desensitization to the subsequent acute insulin stimulatory effects Of L-alanine. This was accompanied by substantial changes in gene expression of BRIN-BD I I cells. Sixty-six genes were up-regulated; 1.8-fold, including many involved in cellular signalling, metabolism, gene regulation, protein synthesis, apoptosis and the cellular stress response. Subsequent functional experiments confirmed that L-alanine provided protection of BRIN-BD I I cells from pro-inflammatory cytokine-induced apoptosis. Protection from apoptosis was mimicked by NMA or DPI suggesting L-alanine enhances intracellular antioxidant generation. These observations indicate important long-term effects of L-alanine in regulating gene expression, secretory function and the integrity of insulin-secreting cells. Specific amino acids may therefore play a key role in beta-cell function in vivo.",
author = "GA Cunningham and Neville McClenaghan and Peter Flatt and P Newsholme",
year = "2005",
month = "11",
doi = "10.1042/CS20050149",
language = "English",
volume = "109",
pages = "447--455",
journal = "Clinical Science",
issn = "0143-5221",
number = "5",

}

L-alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis. / Cunningham, GA; McClenaghan, Neville; Flatt, Peter; Newsholme, P.

In: Clinical Science, Vol. 109, No. 5, 11.2005, p. 447-455.

Research output: Contribution to journalArticle

TY - JOUR

T1 - L-alanine induces changes in metabolic and signal transduction gene expression in a clonal rat pancreatic beta-cell line and protects from pro-inflammatory cytokine-induced apoptosis

AU - Cunningham, GA

AU - McClenaghan, Neville

AU - Flatt, Peter

AU - Newsholme, P

PY - 2005/11

Y1 - 2005/11

N2 - Acute effects of nutrient stimuli on pancreatic beta-cell function are widely reported; however, the chronic effects of insulinotropic amino acids, such as L-alanine, on pancreatic beta-cell function and integrity are unknown. In the present study, the effects of prolonged exposure (24 h) to the amino acid L-alanine on insulin secretory function, gene expression and pro-inflammatory cytokineinduced apoptosis were studied using clonal BRIN-BDII cells. Expression profiling of BRIN-BD I I cells chronically exposed to L-alanine was performed using oligonucleotide microarray analysis. The effect of alanine, the NOS (inducible nitric oxide synthase) inhibitor NMA (N-G -methyl-L-arginine acetate) or the NOS and NADPH oxidase inhibitor DPI (diphenylene iodonium) on apoptosis induced by a pro-inflammatory cytokine mix [IL- I beta (interleukin- I beta), TNF-alpha (tumour necrosis factor-a) and IFN-gamma (interferon-gamma)] was additionally assessed by flow cytometry. Culture for 24 h with 10 MM L-alanine resulted in desensitization to the subsequent acute insulin stimulatory effects Of L-alanine. This was accompanied by substantial changes in gene expression of BRIN-BD I I cells. Sixty-six genes were up-regulated; 1.8-fold, including many involved in cellular signalling, metabolism, gene regulation, protein synthesis, apoptosis and the cellular stress response. Subsequent functional experiments confirmed that L-alanine provided protection of BRIN-BD I I cells from pro-inflammatory cytokine-induced apoptosis. Protection from apoptosis was mimicked by NMA or DPI suggesting L-alanine enhances intracellular antioxidant generation. These observations indicate important long-term effects of L-alanine in regulating gene expression, secretory function and the integrity of insulin-secreting cells. Specific amino acids may therefore play a key role in beta-cell function in vivo.

AB - Acute effects of nutrient stimuli on pancreatic beta-cell function are widely reported; however, the chronic effects of insulinotropic amino acids, such as L-alanine, on pancreatic beta-cell function and integrity are unknown. In the present study, the effects of prolonged exposure (24 h) to the amino acid L-alanine on insulin secretory function, gene expression and pro-inflammatory cytokineinduced apoptosis were studied using clonal BRIN-BDII cells. Expression profiling of BRIN-BD I I cells chronically exposed to L-alanine was performed using oligonucleotide microarray analysis. The effect of alanine, the NOS (inducible nitric oxide synthase) inhibitor NMA (N-G -methyl-L-arginine acetate) or the NOS and NADPH oxidase inhibitor DPI (diphenylene iodonium) on apoptosis induced by a pro-inflammatory cytokine mix [IL- I beta (interleukin- I beta), TNF-alpha (tumour necrosis factor-a) and IFN-gamma (interferon-gamma)] was additionally assessed by flow cytometry. Culture for 24 h with 10 MM L-alanine resulted in desensitization to the subsequent acute insulin stimulatory effects Of L-alanine. This was accompanied by substantial changes in gene expression of BRIN-BD I I cells. Sixty-six genes were up-regulated; 1.8-fold, including many involved in cellular signalling, metabolism, gene regulation, protein synthesis, apoptosis and the cellular stress response. Subsequent functional experiments confirmed that L-alanine provided protection of BRIN-BD I I cells from pro-inflammatory cytokine-induced apoptosis. Protection from apoptosis was mimicked by NMA or DPI suggesting L-alanine enhances intracellular antioxidant generation. These observations indicate important long-term effects of L-alanine in regulating gene expression, secretory function and the integrity of insulin-secreting cells. Specific amino acids may therefore play a key role in beta-cell function in vivo.

U2 - 10.1042/CS20050149

DO - 10.1042/CS20050149

M3 - Article

VL - 109

SP - 447

EP - 455

JO - Clinical Science

T2 - Clinical Science

JF - Clinical Science

SN - 0143-5221

IS - 5

ER -